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Abstract. We consider the hard leptoproduction of a photon off nuclei up to spin-1. As a new result
we present here the general azimuthal angular dependence of the differential cross section for a spin-1
target. Its twist-two Fourier coefficients of the interference and squared deeply virtual Compton scattering
amplitude are evaluated in leading order approximation of perturbation theory in terms of generalized parton
distributions, while the pure Bethe–Heitler cross section is exactly calculated in terms of electromagnetic
form factors. Relying on a simple model for the nucleon generalized parton distribution H, which describes
the existing DVCS data for a proton target, we estimate the size of unpolarized cross sections, beam and
longitudinal target spin as well as unpolarized charge asymmetries for the present fixed target experiments
with nuclei. These estimates are confronted with preliminary HERMES data for deuterium and neon.

1 Introduction

Exclusive two-photon processes in the light-cone domi-
nated region, i.e., in the generalized Bjorken limit, are
most suitable for the exploration of the partonic content
of hadrons. This comes from the fact that the dominant
contribution to the amplitude of such processes arises from
Feynman diagrams in which both photons directly couple
to one quark line [1]. The processes of interest are various
photon-to-meson transition form factors, i.e., γ∗γ(∗) → M ,
the production of hadron pairs by photon fusion and the
crossed processes like γ∗H → Bγ or γ(∗)H → Bl+l−. The
latter class might be denoted as deeply virtual Compton
scattering (DVCS). It contains several processes: DVCS on
a hadron target without and with excitation of the final
state due to the leptoproduction of a real photon [2–7],
the photoproduction [8] or leptoproduction [9,10] of a lep-
ton pair.

The factorization of short- and long-range dynamics is
formally given by the operator product expansion (OPE)
of the time ordered product of two electromagnetic cur-
rents, which has been worked out at leading twist-two
in next-to-leading order (NLO) and at twist-three level
in leading order (LO) of perturbation theory (for refer-
ences see [7]). However, one should be aware that the
partonic hard-scattering part, i.e., the Wilson coefficients,
contains collinear singularities, which are absorbed in the
non-perturbative distributions by a factorization proce-
dure, which has been proven at twist-two level [11,12].

The non-perturbative distributions are defined in terms
of light-ray operators with definite twist sandwiched be-
tween the corresponding hadronic states. These distribu-
tions, depending on the two-photon process under consid-

eration, are sensitive to several aspects of hadronic physics.
Especially, in DVCS one can access the so-called general-
ized parton distributions (GPDs). The second moment of
the flavor singlet GPD is related to the expectation value
of the energy momentum tensor. Thus, it contains infor-
mation on the angular orbital momentum fraction of the
nucleon spin carried by quarks [13]. Moreover, in contrast
to ordinary parton distributions, measurable in inclusive
reactions, GPDs carry also information about the parton
distribution in transverse direction and might so provide
us with a hologramatic picture of the nucleon [14–17].

Although GPDs are accessible in the leptoproduction
of mesons [18], DVCS is the theoretically cleanest tool to
probe the partonic content of the nucleon on the level of
amplitudes. The DVCS process in the leptoproduction of
a photon on a proton target has been measured by the H1
collaboration [19] in the small xB region (see also [20]), due
to the single beam spin asymmetry by the HERMES [21]
and CLAS [22] collaborations as well as due to the charge
asymmetry at HERMES [23]. Unfortunately, in this DVCS
process a deconvolution of GPDs from a measured ampli-
tude is practically impossible. Thus, a model for GPDs
is required that satisfies the constraints coming from first
principles [1–3], namely, support properties, sum rules and
the reduction to the parton densities in the forward kine-
matics. Moreover, various authors derived positivity con-
straints (see [24] and references therein). Although these
derivations are intuitively understandable, a number of
questions can be raised that are hard to answer. At LO
in perturbation theory all experimental data are consis-
tent with an oversimplified GPD model [7] that fulfills
the first principle and also the positivity constraints, de-
rived in [25,26].
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Fig. 1. The kinematics of the leptopro-
duction in the target rest frame. The
z-direction is chosen counter-along the
three-momentum of the incoming vir-
tual photon. The lepton three-momenta
form the lepton-scattering plane, while
the recoiled nucleus and outgoing real
photon define the nucleus scattering
plane. In this reference system the az-
imuthal angle of the scattered lepton
is φl = 0, while the azimuthal angle
between the lepton plane and the re-
coiled nucleus momentum is φN = φ.
When the nucleus is transversely po-
larized (in this reference frame) S⊥ =
(0, cos Φ, sin Φ, 0), the angle between the
spin vector and the scattered nucleus is
denoted as ϕ = Φ − φN

Recently, the measurements of beam spin asymmetries
in the leptoproduction of a photon on neon and deuteron
targets have been reported by the HERMES collabora-
tion [27]. Certainly, it is appealing to employ DVCS for
the investigation of the internal structure of nuclei. Al-
though the binding energy is negligibly small compared
to the virtuality of the exchanged photon, one might ex-
pect that DVCS observables are affected by the binding
forces. While for spin-0 and -1/2 targets one might as-
sume that the nucleus GPDs can be expressed in terms
of slightly modified proton GPDs, in the case of a spin-1
target new GPDs enter the DVCS observables, in which
bound state effects are dominantly manifest. An appro-
priate candidate for studying such effects is the deuteron,
which has been widely used as a target in lepton-scattering
experiments. This nucleus has been extensively studied in
both deep-inelastic [28] and elastic [29–31] scattering. From
the theoretical point of view, it would be desirable to have
complementary information, which would give us a deeper
understanding of the binding forces and could hopefully
shed some light on its effective description and the funda-
mental degree of freedom in QCD.

On the theoretical side it is time to study DVCS on
nuclei in more detail. For deuterium a parameterization
of leading twist-two operator matrix elements in terms of
GPDs has been proposed in [32]. First estimates for the
beam spin asymmetry have been presented in [33], based
on a drastic simplification of the theoretical prediction,
and in [34,35] by means of a convolution model. In [36] it
has been argued that nuclei GPDs can deliver information
about the spatial distribution of the strong forces in terms
of the fundamental degrees of freedom in QCD. In this
paper we complete the twist-two sector for the theoretical
predictions for a spin-1 target, generalize our oversimpli-
fied model, and estimate various asymmetries for fixed
target experiments.

The outline of this paper is as follows: In Sect. 2 the
OPE approach is applied to DVCS on a target with ar-
bitrary spin. Employing these general results, in Sect. 3
we evaluate the Fourier coefficients appearing in the cross
section for a spin-1 target at leading twist and at leading

order in perturbation theory. In Sect. 4 we present over-
simplified GPD models for nuclei, expressed by the proton
ones, where bound state effects for longitudinal degrees of
freedom are neglected. Relying on qualitative properties of
proton GPDs, consistent with the DVCS data for the pro-
ton target, we estimate in Sect. 5 by a rough kinematical
approximation beam spin, charge, and target spin asymme-
tries for fixed target experiments at HERMES and JLAB
kinematics. We then provide numerical results for these
asymmetries and the unpolarized cross section. Finally, we
summarize and give conclusions. Appendices are devoted
to the parameterization of the deuteron electromagnetic
form factors, the results for the Fourier coefficients of a
spin-1 target, and the target mass corrections.

2 Azimuthal angular dependence
of the cross section

In this section we evaluate the differential cross section for
the leptoproduction of a photon,

l±(k)A(P1) → l±(k′)A(P2)γ(q2), (1)

off a nucleus target with atomic mass number A and mass
MA. The goal is to express the azimuthal angular harmon-
ics in terms of the electromagnetic current and Compton
amplitudes to twist-two accuracy at LO in αs. The consid-
erations are valid for any target with arbitrary spin content.

The five-fold differential cross section

dσ
dxAdyd|∆2|dφdϕ

=
α3xAy

16 π2 Q2
√

1 + ε2

∣∣∣∣ Te3
∣∣∣∣2 ,

ε ≡ 2xA
MA

Q (2)

depends on the scaling variable xA = Q2/2P1 · q1, where
Q2 = −q21 with q1 = k−k′, the momentum transfer square
∆2 = (P2−P1)2, the photon energy fraction y = P1 ·q1/P1 ·
k and, in general, two azimuthal angles. In the following
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Fig. 2. Both DVCS a and BH b am-
plitudes contribute to the hard lepto-
production amplitude of a photon

we refer to the rest frame, shown in Fig. 1. The scaling
variable xA is related to the Bjorken variable xB by

xB =
Q2

2MNEy
≈ AxA , (3)

where MN is the nucleon mass and E is the lepton beam
energy. The photon energy fraction y and the Bjorken vari-
able satisfy the well-known relation

xBy =
Q2

sN −M2
N

, (4)

where sN is the center-of-mass energy squared for the lep-
ton scattering off a nucleon. Below it is sometimes more
convenient to use the scaling variable

ξ ≈ −η ≈ xA

2 − xA
≈ xB

2A− xB
(5)

instead of xA, where ∆2/Q2 corrections have been ne-
glected. Here η is called the skewness parameter, giving
the longitudinal momentum fraction in the t-channel. As
we see, in the DVCS kinematics it is simply related to the
Bjorken-like scaling variable ξ. To define the azimuthal an-
gles we point the virtual photon three-momentum towards
the negative z-direction. φ = φN −φl is the angle between
the lepton and nucleus scattering planes and ϕ = Φ− φN

is the difference of the azimuthal angle Φ of the spin vector

Sµ = (0, cosΦ sinΘ, sinΦ sinΘ, cosΘ), (6)

giving the magnetic quantization direction for the initial
nucleus, and the azimuthal angle φN of the recoiled nucleus
as depicted in Fig. 1.

We consider this process in the (generalized) Bjorken
limit, i.e., Q2 ∼ P1 ·q1 should be large compared toM2

A and
∆2. Obviously, increasing the atomic mass number A one
will violate the condition Q2 � M2

A, since Q2 is in reality
restricted by the experimental settings. It is instructive to
consider the situation in deeply inelastic scattering. Here
the hadronic tensor is given by the absorptive part of the
forward scattering amplitude. In the kinematical forward
case the target mass corrections are given by ε2, which is
independent on the mass number A. In our kinematics the
situation is more complex [37]. Fortunately, it is shown in
Appendix C that within our GPD model, specified below, in

the DVCS kinematics the target mass corrections1 possess
the same A scaling as the twist-two contributions. Thus,
they have nearly the same size as for a nucleon target and
we may employ the OPE approach also for realistic Q2

and larger A.
In the one virtual photon exchange approximation the

amplitude T is the sum of the DVCS TDVCS and Bethe-
Heitler (BH) TBH ones, displayed in Fig. 2:

T 2 =
{
|TBH|2 + |TDVCS|2 + I

}
, (7)

with the interference term

I = TDVCST ∗
BH + T ∗

DVCSTBH, (8)

where the recoiled lepton (λ′), nucleus (S′) as well as pho-
ton (Λ′) polarization will usually not be observed. Each of
these three terms in (7) is given by the contraction of the
DVCS tensor,

Tµν(P,∆, q|S, S′)

=
i
e2

∫
dxeix· q〈P2, S

′|Tjµ(x/2)jν(−x/2)|P1, S〉, (9)

or/and the electromagnetic current,

Jα(P,∆|S, S′) =
1
e
〈P2, S

′|jα(0)|P1, S〉,

jα =
∑

i=u,d,s

eiψ̄γαψ, (10)

with a corresponding leptonic tensor

|TDVCS|2 =
e6

q41
(−gαβ)Lµν

DVCS

∑
S′
Tαµ (Tβν)†

, (11)

|TBH|2 =
e6

∆4L
µν
BH

∑
S′
JµJ

†
ν , (12)

1 We distinguish between power suppressed corrections that
arise from multi-parton correlation GPDs and target mass cor-
rections. The former ones contain new dynamical information
and not much is known about them. The latter ones arise
from trace subtraction of twist-two operators. They have been
elaborated in [37] and are given as convolutions with so-called
double distributions or alternatively with GPDs.
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I =
±e6
q21∆

2L
αµν
∑
S′

[
Jµ (Tαν)† + h.c.

]
{

+ for e−,

− for e+.
(13)

Here P = P1+P2 and q = (q1+q2)/2 and we summed over
the photon (Λ′) and lepton (λ′) polarizations, where the
second summation is included in the leptonic tensors. For
any nucleus (or hadron) target a general parameterization
of the DVCS tensor at twist-three level and in LO approx-
imation of perturbation theory has been given in [38]. To
NLO accuracy a new Lorentz structure occurs due to the
flip of the photon helicity by two units, which is caused
by the so-called twist-two gluonic transversity [39–41], de-
scribing an angular orbital momentum flip by two units,
as well as twist-four effects [42]. In the following we only
consider its twist-two part, where it is expected that for the
typical kinematics of present fixed target experiments the
twist-three contributions are small for several observables,
but not for all of them. In this approximation the DVCS
tensor is parameterized by a vector V µ

1 and an axial-vector
Aµ

1 part [5]:

Tµν = −P σ
µ gστPτ

ν

q · V1

P · q − P σ
µ iεστq ρPτ

ν

Aρ
1

P · q , (14)

where the projector Pµν = gµν − q1µq2ν/q1 · q2 ensures
current conservation. The leptonic tensors are evaluated
by means of the standard projector technique and read
after summation over the helicity of the final state lepton
(see Fig. 2)

Lµν
DVCS =

∑
λ′
ū(k′, λ′)γµu(k, λ)ū(k, λ)γνu(k′, λ′)

= Tr γµ/k
1 − λγ5

2
γν/k′ (15)

= 2
(
kµk′ν + kνk′µ − k · k′ gµν − iλ εµναβ kαk

′
β

)
,

Lµν
BH = (−gαβ)TrΓαµ(k, k′, ∆)/k

1 − λγ5

2

×Γ νβ(k, k′, ∆)/k′,

(16)

Lαµν = (−gα
β)TrΓ βµ(k, k′, ∆)/k

1 − λγ5

2
γν/k′, (17)

where

Γαµ(k, k′, ∆) =
γα(/k − /∆)γµ

(k −∆)2
+
γµ(/k′ + /∆)γα

(k′ +∆)2
(18)

is the leptonic part of the BH amplitude.
Employing the parameterizations (31), (33) and (34),

the contractions of leptonic and DVCS tensors result in the
kinematically exact expression for the squared BH term (of
course, in tree approximation)

|TBH|2 =
−8e6

P1(φ)P2(φ)Q4∆2

×
∑
S′

{
q · J k · J† + k · J q · J† − q · J q · J† (19)

−2k · J k · J† − (Q2 −∆2 + 2k ·∆)2 + 4(k ·∆)2

4∆2 J · J†

+
iλ
[(

Q2 + 4k ·∆−∆2
)
εq∆JJ† +∆2εk(2q+∆)JJ†

]
2∆2

}
,

while the interference term2 (here for negatively charged
lepton scattering)

I =
2 − 2y + y2

y2P1(φ)P2(φ)
4e6 ξ
∆2Q4

(
kσ − qσ

y

)

×
∑
S′

[(
Jσ + 2∆σ

q · J
Q2

)
q · V †

1 + 2iεσq∆ J
q ·A†

1

Q2

]
(20)

+
λ(2 − y)y

y2P1(φ)P2(φ)
4e6 ξ
∆2Q4

(
kσ − qσ

y

)

×
∑
S′

[(
Jσ + 2∆σ

q · J
Q2

)
q ·A†

1 + 2iεσq∆ J
q · V †

1

Q2

]
+ h.c.,

and the squared DVCS amplitude

|TDVCS|2 = 8e6
2 − 2y + y2

y2

ξ2

Q6

×
∑
S′

(
q · V1 q · V †

1 + q ·A1 q ·A†
1

)
(21)

+8e6
λ(2 − y)

y

ξ2

Q6

∑
S′

(
q · V1 q ·A†

1 + q ·A1 q · V †
1

)
are expanded with respect to 1/Q. In contrast to the
squared DVCS amplitude the interference as well as the
squared BH terms have an additional φ-dependence due
to the (scaled) BH propagators

P1 ≡ (k − q2)2

Q2 = − 1
y(1 + ε2)

{J + 2K cos(φ)} , (22)

P2 ≡ (k −∆)2

Q2 = 1 +
∆2

Q2 +
1

y(1 + ε2)
{J + 2K cos(φ)} ,

where

J =
(

1 − y − yε2

2

)(
1 +

∆2

Q2

)
− (1 − x)(2 − y)

∆2

Q2

and

K2 = −∆2

Q2 (1 − xA)
(

1 − y − y2ε2

4

)(
1 − ∆2

min

∆2

)
(23)

×
{√

1 + ε2 +
4xA(1 − xA) + ε2

4(1 − xA)
∆2 −∆2

min

Q2

}
,

2 Note that the sign in front of the Levi-Civita tensors in
(20) and (23) of [5] is erroneous.
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with the plus sign taken for the square root in (22). It van-
ishes at the kinematical boundary ∆2 = ∆2

min, determined
by the minimal value

−∆2
min = Q2 2(1 − xA)

(
1 −

√
1 + ε2

)
+ ε2

4xA(1 − xA) + ε2

≈ M2
Ax

2
A

1 − xA + xAM2
A/Q2 , (24)

as well as at

y(x,Q2) = ymax ≡ 2
√

1 + ε2 − 1
ε2

≈ 1 − M2
Ax

2
A

Q2 .

In the frame chosen the contractions of the leptonic, de-
pending on k, q1, and ∆, and DVCS, a function of q, P, ∆
and the spin vector S, tensors in (15)– (17) yield finite sums
of Fourier harmonics [4, 7]:

|TBH|2 =
e6(1 + ε2)−2

x2
Ay

2∆2 P1(φ)P2(φ)

×
{
cBH
0 +

2∑
n=1

[
cBH
n cos (nφ) + sBH

n sin (φ)
]}

, (25)

|TDVCS|2 =
e6

y2Q2 (26)

×
{
cDVCS
0 +

2∑
n=1

[
cDVCS
n cos(nφ) + sDVCS

n sin(nφ)
]}

,

I =
±e6

xAy3∆2P1(φ)P2(φ)

×
{
cI0 +

3∑
n=1

[
cIn cos(nφ) + sI

n sin(nφ)
]}

, (27)

where the + (−) sign in the interference term stands for the
negatively (positively) charged lepton beam. In the twist-
two sector the φ independent contribution of the squared
DVCS amplitude is

cDVCS
0 = 8ξ2

∑
S′

[(
2 − 2y + y2) q · V1 q · V †

1 + q ·A1 q ·A†
1

Q4

+λ(2 − y)y
q · V1 q ·A†

1 + q ·A1 q · V †
1

Q4

]
, (28)

while the Fourier coefficients of the interference term are{
cI1
sI
1

}
= 8ξxA

{
	e

m

}
ykσ − qσ

Q2 (29)

×
∑
S′

{
(2 − 2y + y2)

×
[(

Jσ + 2∆σ
q · J
Q2

)
q · V †

1

Q2 +
2iεσq∆ J

Q2

q ·A†
1

Q2

]

+λ(2 − y)y

×
[(

Jσ + 2∆σ
q · J
Q2

)
q ·A†

1

Q2 +
2iεσq∆ J

Q2

q · V †
1

Q2

]}
,

expanded in leading order of 1/Q. Note that the cos(3φ)
and cos(2φ) harmonics in the interference and squared
DVCS term, respectively, also appear at twist-two level.
Since they arise from the gluon transversity, they are sup-
pressed by αs/π.

3 Fourier coefficients for a spin-1 target

So far the formalism, presented in the previous section,
is rather general and at LO of perturbation theory it can
be easily extended to the twist-three sector. Introducing
an appropriate form factor decomposition of the electro-
magnetic current and the DVCS amplitudes, it can be
employed for any target. The resulting Fourier coefficients
for the spin-0 and -1/2 targets are presented at twist-three
level in [6, 7] for a pion3 and proton target, respectively.
The results for a nucleus target follow from the replace-
ments of kinematical variables, form factors Fi(∆2) and
(set) of GPDs:

xB → xA , ξ → ξ , M → MA ,

Fi(∆2) → FA
i (∆2) , (30)

F =
{
H,E, H̃, Ẽ,

}
(x, η,∆2)

→ FA =
{
HA, EA, H̃A, ẼA,

}
(x, η,∆2) .

Let us now derive the Fourier coefficients for a spin-1 target
in terms of GPDs. The electromagnetic current

Jµ = −ε∗2 · ε1PµG1 +
(
ε∗2 · Pε1µ + ε1 · Pε∗2µ

)
G2

−ε∗2 · P ε1 · P Pµ

2M2
A

G3 (31)

is given by three form factors Gi(∆2) with i = {1, 2, 3},
where ε1µ (ε2µ) denote the three polarization vectors for
the initial (final) nucleus. The form factors Gi(∆2) can
be measured due to the elastic scattering of a lepton on
a nucleus. For the deuteron their parameterizations are
available in the literature; see [30,31] and references therein.

At twist-two level the amplitudes V1 and A1, appearing
in the parameterization (14) of the DVCS tensor, can be
decomposed in a complete basis of nine Compton form
factors (CFFs)

F(ξ,∆2,Q2) (32)

=
{

H1,H2,H3,H4,H5, H̃1, H̃2, H̃3, H̃4

}
(ξ,∆2,Q2).

3 Here the variable xB has been defined in the rest frame with
respect to the target mass rather than to the nucleon mass.
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For convenience we employed here the scaling variable ξ,
c.f., (5). Adopting the notation of [32], the CFFs read for
the vector

V1 µ = −ε∗2 · ε1Pµ H1 +
(
ε∗2 · Pε1µ + ε1 · Pε∗2µ

)
H2 (33)

−ε∗2 · P ε1 · P Pµ

2M2
A

H3 +
(
ε∗2 · Pε1µ − ε1 · Pε∗2µ

)
H4

+

(
2M2

A

{
ε∗2 · qε1µ + ε1 · qε∗2µ

}
P · q +

ε∗2 · ε1
3

Pµ

)
H5,

and axial-vector

A1 µ = iεµε∗
2ε1P H̃1 −

iεµ∆Pε1 ε
∗
2 · P + iεµ∆Pε∗

2
ε1 · P

M2
A

H̃2

−
iεµ∆Pε1 ε

∗
2 · P − iεµ∆Pε∗

2
ε1 · P

M2
A

H̃3 (34)

−
iεµ∆Pε1 ε

∗
2 · q + iεµ∆Pε∗

2
ε1 · q

q · P H̃4,

where 1/Q-power suppressed effects have been neglected.
The CFFs in (33) and (34) are given by a convolution

of perturbatively calculable coefficient functions C(±) and
twist-two GPDs via

Hk =
∑

i=u,...

∫ 1

−1
dxC(−)

i (ξ, x,Q2, µ2)Hi
k(x, η,∆2, µ2)|η=−ξ,

for k = {1, . . . , 5}, (35)

H̃k =
∑

i=u,...

∫ 1

−1
dxC(+)

i (ξ, x,Q2, µ2)H̃i
k(x, η,∆2, µ2)|η=−ξ,

for k = {1, . . . , 4}, (36)

where µ denotes the factorization scale. For each quark
species i we have nine GPDs. The two sets {Hi

1, . . . , H
i
5}

and {H̃i
1, . . . , H̃

i
4} are defined by off-forward matrix ele-

ments of vector and axial-vector light-ray operators. All
GPDs of a given set satisfy the same evolution equations,
which govern the logarithmical dependence on the factor-
ization scale µ. The coefficient functions C(∓) have been
perturbatively expanded. In LO they read for the even (−)
and odd (+) parity sectors

ξ C
(∓)
(0)i (ξ, x) =

Q2
i

1 − x/ξ − i0
∓ Q2

i

1 + x/ξ − i0
, (37)

where Qi is the fractional quark charge.
The Fourier coefficients c/si can be calculated from (20)

and (21), and analogous ones for the squared BH ampli-
tude by summing over the polarization Λ′, where we can
employ the common projector technique. For a massive
spin-1 particle we have (see for instance [43])

ε∗1µ(Λ = 0)ε1ν(Λ = 0) = SµSν , (38)

ε∗1µ(Λ = ±1)ε1ν(Λ = ±1)

=
1
2

(
−gµν +

P1µP1ν

M2
A

− SµSν +
iΛ
MA

εµνP1 S

)
,

where Λ = {+1, 0,−1} denotes the magnetic quantum
number with respect to the quantization direction given
by the spin vector Sµ, defined in (6). Obviously, the spin
sum of the recoiled nucleus is

1∑
Λ′=−1

ε∗2µ(Λ′)ε2ν(Λ′) = −gµν +
P2µP2ν

M2
A

. (39)

As we see, the Fourier coefficients for a spin-1 target quad-
ratically depend on the spin vector Sµ and, thus, we in-
troduce the following decomposition

cTn =
3
2
Λ2cTn,unp + Λ

{
cTn,LP cos(Θ) + cTn,TP(ϕ) sin(Θ)

}
+
(

1 − 3
2
Λ2
){

cTn,LTP(ϕ) sin(2Θ)

+cTn,LLP cos2(Θ) +cTn,TTP(ϕ) sin2(Θ)
}

(40)

for T = {BH, I,DVCS}. An analogous decomposition
holds true for the odd harmonics sT

n . The unpolarized and
the longitudinally polarized coefficients c/sT

n,unp, c/sT
n,LP,

and c/sT
n,LLP, respectively, are independent ofϕ. The trans-

verse coefficients c/sT
n,TP and the transverse-longitudinal

interference terms may be decomposed with respect to the
first harmonics in the azimuthal angle ϕ,

cTn,TP(ϕ) = cTn,TP+ cos(ϕ) + sT
n,TP− sin(ϕ), (41)

cTn,LTP(ϕ) = cTn,LTP+ cos(ϕ) + sT
n,LTP− sin(ϕ), (42)

while c/sT
n,TTP may be written as

cTn,TTP(ϕ) = cTn,TTPΣ + cTn,TTP∆ cos(2ϕ)

+sT
n,TTP± sin(2ϕ). (43)

Analogous definitions are used for the odd harmonics (just
replace c ↔ s). Obviously, cTn,TTPΣ does not belong to an
independent frequency, rather it can be included in the
constant and cos2(θ) terms of (40). Indeed, the calculation
of the Fourier coefficients establishes the equality

cT0,LLP = 3cT0,unp − 2cT0,TTPΣ , T = {BH, I,DVCS}, (44)

and an analogous one for the sI
1,TTPΣ coefficients.

We will now present the results for the dominant har-
monics c/sI

1 of the interference term. We write them as a
product of leptonic prefactors L, defined in Table 1, with
the real/imaginary part of the “universal” functions CI

i :{
cI1,i

sI
1,i

}
=

{
LIc

1,i

LIs
1,i

}{
	e

m

}
CI

i ,

for i = {unp, . . . ,TTP−}. (45)
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Table 1. Kinematical prefactors that appear in the Fourier coefficients of the interference
term (45) and squared DVCS amplitude (47)

i LIc
1,i LIs

1,i LDVCS
0,i

unp −8K(2 − 2y + y2) 8λKy(2 − y) 2 − 2y + y2

LP −8λKy(2 − y) 8K(2 − 2y + y2) λy(2 − y)

TP+ −8λ
√

1−yMA
Q y(2 − y) 8

√
1−yMA

Q (2 − 2y + y2) λ QK√
1−yMA

y(2 − y)

TP− 8λ
√

1−yMA
Q y(2 − y) 8

√
1−yMA

Q (2 − 2y + y2) − QK
MA

√
1−y

(2 − 2y + y2)

LLP −8K(2 − 2y + y2) 8λKy(2 − y) 2 − 2y + y2

LTP+ −8
√

1−yMA
Q (2 − 2y + y2) 8λ

√
1−yMA

Q y(2 − y) QK
MA

√
1−y

(2 − 2y + y2)

LTP− 8
√

1−yMA
Q (2 − 2y + y2) 8

√
1−yMA

Q λy(2 − y) λ QK√
1−yMA

y(2 − y)

TTPΣ −8K(2 − 2y + y2) 8λKy(2 − y) 2 − 2y + y2

TTP∆ −8K(2 − 2y + y2) 8λKy(2 − y) 2 − 2y + y2

TTP± 8K(2 − 2y + y2) 8λKy(2 − y) −λy(2 − y)

Since they linearly depend on the nine CFFs and three
electromagnetic form factors, we write these functions in
terms of real valued 9 × 3 matrices MA:

CI
i =

(
H1 . . .H5, H̃1 . . . H̃4

)
MI

i

G1

G2

G3

 ,

for i = {unp, . . . ,TTP−}. (46)

In the case of a longitudinally polarized target the three
matrices MI

unp, MI
LP, and MI

LLP are presented in Ap-
pendix B.1 for small values of the momentum transfer4,
i.e., −∆2 
 M2

A.
The squared DVCS amplitude is written in an analo-

gous manner, namely,

cDVCS
0,i = LDVCS

0,i CDVCS
i , for i = {unp, . . . ,TTP−},(47)

where the nine functions

CDVCS
i =

(
H1 . . . H̃4

)
MDVCS

i

H∗
1
...

H̃∗
4

 (48)

are expressed by 9 × 9 hermitian matrices MDVCS
i . The

leptonic factors LDVCS
0,i are given in Table 1 and the ap-

proximation of the matrices for longitudinally polarized
target can be found in Appendix B.2. The analogous BH
contributions are listed in Appendix B.3.

Let us summarize. For a given harmonic in φ we have
altogether nine possible observables. In principle, they can
be measured by an appropriate adjustment of the spin vec-
tor Sµ and Fourier analysis with respect to the azimuthal

4 The complete expressions for all matrices of the inter-
ference and squared DVCS terms as well as the complete
squared BH term are available as a TeX or MATHEMATICA
file from the authors via e-mail: axel.kirchner@physik.uni-
regensburg.de, dieter.mueller@.physik.uni-regensburg.de
(dmueller@theorie.physik.uni-wuppertal.de).

angle ϕ. The interference term linearly depends on the
CFFs and is, thus, of special interest. In facilities that
have both kinds of leptons it can be separated by means of
the charge asymmetry. Combined with single spin-flip and
unpolarized as well as double spin-flip measurements, the
sin / cos harmonics can be separated. This would provide
access to the imaginary and real part of the nine linear
combinations CI

i and so to the nine GPDs. To extract in-
formation from the nine GPDs one needs a realistic model
for them, where the model parameters have to be adjusted
by fitting the measured data. Certainly, this goal requires
a deep understanding of non-perturbative physics and a
dedicated facility.

4 Models for nucleus GPDs

The main uncertainty in the estimate of observables is the
lack of knowledge of the GPDs. Since GPDs are hybrids of
exclusive and inclusive quantities, we may expect that the
constraints on models arising from the reduction to parton
densities in the forward limit or to elastic electromagnetic
form factors, appearing as the lowest moment of GPDs,
ensure the right order of magnitude for cross sections and
asymmetries. However, one should keep in mind that the
predictions for DVCS in terms of GPDs are rather complex
and that only few quantities, like the sign and the size of
the single beam spin asymmetry or the size of the unpo-
larized cross section, are “predictable” in a rather model
independent manner. We can also rephrase this statement
in a positive sentence, namely, most of the observables are
sensitive to details of the GPD models. One example is for
instance the charge asymmetry for DVCS on an unpolar-
ized proton target. However, we should emphasize again
that the interpretation of the experimental data requires
a careful consideration of possible kinematical effects as it
has been stressed in [7].
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4.1 Scalar target

To start with the simplest case, we want to consider a
scalar nucleus target A with charge Ze. In this case only
one GPD arises at twist-two level and two of them at
twist-three level [6,38,44,45]. The former one is defined as
expectation value of twist-two light-ray operators

Hi/A(x, η,∆,Q2) (49)

=
∫

dκ
2π

eiκP+x〈A(P2)|ψ̄i(−κn)γ+ψi(κn)|A(P1)〉
∣∣∣
η=

∆+
P+

,

where the gauge link has been omitted. Here the + com-
ponent of a four vector is given by the contraction with
the light-like vector n, e.g., P+ = n ·P . Thus, −1 ≤ x ≤ 1
can be interpreted as a momentum fraction with respect
to the light-cone component P+, while the skewness pa-
rameter η appears as a scaling variable. Lorentz invariance
requires that the nth moment with respect to x of these
functions is a polynomial in η of order n + 1. This is en-
sured by the GPD support, which can be implemented in
a simple manner by the so-called double distribution (DD)
representation [1, 2]

Hi/A(x, η,∆2,Q2) (50)

=
∫ 1

−1
dy
∫ 1−|y|

−1+|y|
dz x δ(x− y − ηz)hi/A(y, z,∆2,Q2) .

Note that, in contrast to the common definition, we in-
cluded here an extra factor x, which guarantees that the
term of order ηn+1 is not absent in the nth x-moment.
Moreover, time reversal invariance combined with her-
miticity requires that they are even in η and, thus, the
double distribution h is even in z. The polynomiality con-
dition is separately ensured for the two regions y ≥ 0 and
y ≤ 0. The so-called positivity constraints, mentioned be-
fore, are not implemented in this representation.

For ∆ → 0 the GPD (49) reduces to the parton and
anti-parton distributions{
qi/A

qi/A

}
(x,Q2) =

{
Hi/A(x, η = 0, ∆2 = 0,Q2)

−Hi/A(−x, η = 0, ∆2 = 0,Q2)

}
(51)

in a nucleus. They might be interpreted as parton densities
of a nucleus in dependence on the momentum fraction x of
the nucleus momentum and the resolution scale Q. Both
parton and anti-parton distributions have the support 0 ≤
x ≤ 1 and we applied here the standard sign conventions
for anti-quarks, so that qi/A is positive. They satisfy the
charge sum rule∫ 1

0
dx

∑
i=u,d,s

Qi

[
qi/A(x,Q2) − qi/A(x,Q2)

]

=
∫ 1

0
dx
[
Quq

uval/A(x,Q2) +Qdq
dval/A(x,Q2)

]
= Z , (52)

and the baryon number conservation sum rule∫ 1

0
dx

1
3

∑
i=u,d,s

[
qi/A(x,Q2) − qi/A(x,Q2)

]

=
∫ 1

0
dx

1
3

[
quval/A(x,Q2) + qdval/A(x,Q2)

]
= A . (53)

In both sum rules the sea quarks drop out and we can read
off the number of valence quarks:∫ 1

0
dxquval/A(x,Q2) = Nuval = 2Z +N , (54)∫ 1

0
dxqdval/A(x,Q2) = Ndval = Z + 2N , N = A− Z .

Furthermore, we have the momentum sum rule:∫ 1

0
dxx

∑
i=u,d,s

[
qi/A(x,Q2) + qi/A(x,Q2)

]

+
∫ 1

0
dxx gA(x,Q2) = 1 , (55)

where gA(x,Q2) is the gluon density.
Now we like to connect the nucleus parton distributions

to the proton ones. Isospin symmetry breaking effects are
rather small and, thus, we employ this symmetry to connect
their parton content:

qu/p = qd/n ≡ qu , qu/p = qd/n ≡ qu,

qd/p = qu/n ≡ qd , qd/p = qu/n ≡ qd ,

qs/p = qs/p = qs/n = qs/n ≡ qs , gp = gn ≡ g .

Considering the nucleus as a system of almost free nucleons,
we can immediately express its parton distributions by
those of the proton

qu/A = Zqu +Nqd , qd/A = Zqd +Nqu ,

qs/A = (Z +N)qs, gA = (Z +N)g . (56)

Additionally, we have to relate the momentum fraction
variable x to that of the struck nucleon. Since the momen-
tum of each nucleon is the 1/Ath part of the nucleus one,
the appropriate scaling of the momentum fraction gives
for instance

qu/A(x) = Aθ(1 − |xA|)
[
Zqu(xA) +Nqd(xA)

]
(57)

and analogously for the other parton distribution. Here
the loss in phase-space due to the restriction x ≤ 1/A
is compensated by the prefactor5 A. Note that qu/A(x)

5 Since often the nucleus parton distribution is defined as
function of the momentum fraction xN = Ax of the nucleon, this
prefactor, given as the Jacobian A = dxN/dx, is usually absent.
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does in reality not vanish at x = 1/A; however, this simple
prescription is for our purpose justified as long asxB = AxA

is in the valence quark region or below. It is easy to convince
ourself that all sum rules (52), (53) and (55) will be obeyed,
if they are satisfied for the nucleon. For the ratio of the
structure functions F2, normalized per nucleon, in deep-
inelastic scattering one finds for an isoscalar target (N =
Z)

FA
2 (xA)

FN
2 (xB)

� 1
A

xA

∑
iQ

2
i q

i/A(xA)
xB
∑

iQ
2
i q

i/N (xB)
= 1 ,

with xA = xB/A. (58)

Certainly, experimental measurements show that this is
only true for xB ∼ 0.25 and in other regions one finds
characteristic deviations from this ratio, which reflect var-
ious aspects of the binding forces between the nucleons.
For the kinematics we are interested in, i.e., xB ∼ 0.1, it
is a small difference, of the order of a few percent, which
can safely be neglected for our purpose.

Inspired by the parton picture, we introduce a termi-
nology for the GPDs. However, we remind that we deal
now with a generalization of distribution amplitudes and
the probabilistic interpretation arises only in the forward
limit, because of the optical theorem. We uniquely separate
a GPD in valence- and sea-like ones

Hi/A(x, η,∆2) (59)

= θ(x ≥ −|η|)Hival/A(x, η,∆2) +Hisea/A(x, η,∆2) .

The sea-like GPD is antisymmetric in x and can be sepa-
rated in quark and anti-quark ones. The latter are obtained
from (50) due to the restriction y ≤ 0 and the whole sea
might be expressed by the anti-quark contribution

Hisea/A(x, η,∆2) = H
i/A

(x, η,∆2) −H
i/A

(−x, η,∆2).

(60)

The valence-like part follows by subtracting the sea quark
GPD from the whole one:

Hival/A(x, η,∆2) (61)

= θ(x ≥ −|η|)
[
Hi/A(x, η,∆2) −Hisea/A(x, η,∆2)

]
.

Note that the valence-like GPDs have no symmetry prop-
erty and that we included the region −|η| ≤ x ≤ |η| in
our definitions, although their partonic interpretation be-
longs more to the excitation of a meson-like state. However,
Lorentz invariance requires that the “inclusive” region, e.g.,
|η| ≤ x ≤ 1, which is closer to a probabilistically partonic
interpretation, is entirely determined by the “exclusive”
one – the reverse is generally not true.

Let us now discuss the form factor aspects of GPDs.
We define for any parton species its own partonic form
factor, which is given by the lowest moment:∫ 1

−ξ

dxHi/A(x, η,∆2,Q2) = NiF
i(∆2) . (62)

The above given definition (59) induces the equality of sea-
and anti-quark form factors. Moreover, Lorentz invariance
and current conservation ensure that the RHS is indepen-
dent on η and Q2, respectively. We normalize the partonic
form factors to 1:

F i(∆2 = 0) = 1 . (63)

Thus, Ni might be interpreted as the number of a given
quark species i inside the nucleus.

The above given sum rules for parton densities can now
be generalized to the non-forward kinematics. The charge
sum rule (52) turns into the relation between partonic and
electromagnetic form factors:

F (∆2) = QuNuvalF
uval(∆2) +QdNdvalF

dval(∆2) ,

F (∆2 = 0) = Z , (64)

while the baryon conserving ones (53) read

FBar(∆2) =
1
3
NuvalF

uval(∆2) +
1
3
NdvalF

dval(∆2) ,

FBar(∆2 = 0) = A . (65)

The sea-like GPDs are antisymmetric in x by definition
and so they can not contribute to these sum rules. The
first moment of the singlet combination, including the glu-
onic component,

∫ 1

−1
dxx

 ∑
i=u,d,s

Hi/A
(
x, η,∆2,Q2)+Hg/A

(
x, η,∆2,Q2)

=
1
P 2

+
〈A(P2)|T++|A(P1)〉 (66)

is given by the expectation value of the + components of
the energy momentum tensor Tµν . Since of current con-
servation, it is also independent on the scale Q. The RHS
is then a polynomial in η of the second order whose co-
efficients are given by the two gravitational form factors,
which appear in the matrix element 〈A(P2)|Tµν |A(P1)〉:

1
P 2

+
〈A(P2)|T++|A(P1)〉 = T 1(∆2) + η2T 2(∆2),

with T 1(∆2 = 0) = 1 . (67)

The normalization of T 1(∆2 = 0) is consistent with the
momentum sum rule (55). It has been argued in [36] that
the second form factor is related to the spatial distribu-
tion of strong forces inside a nucleus and that its partonic
content can be accessed via the GPDs.

To relate the nucleus GPDs to those of the proton, we
rescale, as in the forward case, the longitudinal momentum
fractions, i.e., their x-dependence and η-dependence. This
is again motivated by considering the nucleus as a system
of almost free nucleons that have approximately the same
momenta P1/A = (1 − η)P+/2A, i.e., we set |N(P1)〉 ∝
|N(P1/A)〉 . . . |N(P1/A)〉. At leading order in 1/Q2, the
interaction with the two photons takes then place on one
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Fig. 3. Different contributions to a nucleus GPD in which the light-ray operator couples to a nucleon a, meson exchange in
the t-channel b, mesonic contact term c, and virtual nucleon pair d

of them, which has the outgoing momentum P1/A+∆ =
(1 − η + 2Aη)P+/2A + ∆⊥. Thus, instead of the GPD
definition (49) we have to consider the matrix element,
see Fig. 3a,

Hi/A(x, η)

∝
∫

dκ
2π

eiκP+x〈N(P1/A+∆)|

×ψ̄i(−κn)γ+ψi(κn)|N(P1/A)〉
∣∣∣
η=

∆+
P+

. (68)

To make contact with the nucleon GPD, we refer in this
matrix element to the light-cone component of the struck
nucleon PN

+ = [1 − η +Aη]P+/A. This implies the rescal-
ing prescription for the light-cone momentum fraction and
skewness parameter:

xN =
1 − ηN

1 − η
Ax and ηN ≡ ∆+

PN
+

=
1 − ηN

1 − η
Aη . (69)

From the second equality one easily recovers the scaling law
for the kinematical variable, namely, xB = AxA. However,
this picture cannot be quite realistic, since transferring the
whole transversal momentum ∆⊥ to the struck nucleon,
should, compared to a binding energy of about 10 MeV per
nucleon, induce target dissociation. On the other hand, nu-
clei form factors are non-zero even for rather large momen-
tum transfer, which shows that there is a certain probability
that the transversal momentum transfer is almost equally
distributed among the constituents6. Assuming that the
∆2-dependences factorize, we can take care of this bound
state effect by replacing the partonic proton form factors
with the nucleus ones:

Huval/A(x, η,∆2)

= Fuval/A(∆2)
∣∣∣dxN

dx

∣∣∣θ(|xN | ≤ 1)

×
[
ZHuval +NHdval

]
(xN , ηN ) ,

Hdval/A(x, η,∆2)

= F dval/A(∆2)
∣∣∣dxN

dx

∣∣∣θ(|xN | ≤ 1)

×
[
ZHdval +NHuval

]
(xN , ηN ) ,

6 Certainly, it remains an experimental problem to ensure
that the measured Compton scattering process is coherent and a
theoretical task to derive the predictions for target dissociation.

Hisea/A(x, η,∆2) (70)

= F sea/A(∆2)
∣∣∣dxN

dx

∣∣∣θ(|xN | ≤ 1)AHisea(xN , ηN ) ,

Hg/A(x, η,∆2)

= F g/A(∆2)
∣∣∣dxN

dx

∣∣∣θ(|xN | ≤ 1)AHg(xN , ηN ) .

Here we introduced the reduced proton GPDs by
Hi(x, η) = Hi(x, η,∆2 = 0). For an isoscalar target isospin
symmetry requires

Hu/A(x, η,∆2) = Hd/A(x, η,∆2) (71)

and, thus, also the partonic u and d form factors are equal.
A few comments are in order. First we note that (70)

should be complemented by spin effects arising from the
spin-1/2 nature of the nucleon. This would induce addi-
tional terms expressed by E-type proton GPDs. However,
for the kinematics accessible at present facilities they are
suppressed by kinematical factors and so we expect that
such terms can be safely neglected in numerical estimates.
Secondly, the support of the proton GPDs induces the re-
striction A|x| ≤ (1 − η)/(1 − ηN ), which of course is only
an artifact of our approximation. It is easy to check that by
construction, i.e., introducing the Jacobian

∣∣∣dxN

dx

∣∣∣, all sum
rules (62) for the lowest x-moments remain valid. Unfor-
tunately, in our static model both the symmetry in η and
the polynomiality for higher x-moments, cf.(66) and (67),
are violated.

Obviously, what we presented here is the simplest ver-
sion of a convolution model for nuclei GPDs. It certainly
should be improved by incorporation of binding effects.
However, we note that the serious problems we have spelled
out can only be cured if one goes beyond the impulse ap-
proximation [34, 35], which is a task left for the future.
Hopefully, the bulk of physics is already contained in our
naive static model. A more realistic model, which satis-
fies also the theoretical requirements, might provide only
small corrections to the scaling law (70) and should ex-
plain the distribution of transversal momentum transfer.
Nevertheless, in the case that such effects are responsi-
ble for symmetry breaking, e.g., the breaking of spherical
symmetry implies a non-vanishing quadrupole moment for
the deuteron, they might become a leading contribution
to GPDs that decouples in the forward case. Thus, it is
worth to have a closer look on them.

First we consider the possibility that the light-ray op-
erator insertion couples to meson exchange currents in the
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t-channel, as it is shown in Fig. 3b. The corresponding ma-
trix element reads∫

dκ
2π

eiκP+x〈n(P1/A+∆/2)p(P1/A+∆/2)

×|ψ̄i(−κn)γ+ψi(κn)|p(P1/A)n(P1/A)〉
∣∣∣t−channel

η=
∆+
P+

∝
∫ 1

−1
duφ(u)

∣∣∣udxex

dx

∣∣∣
×
∫

dκ
2π

eiκP ex
+ xex〈π([u− 1]∆/2)|

×O(κ,−κ)|π([u+ 1]∆/2)〉
∣∣∣
ηex=

∆+
Pex
+

.

Here the probability amplitude φ(u) with |u| ≤ 1 is a
function of the light-cone momentum fraction u, defined
by P ex

+ = u∆+ = uηP+. The momentum fraction xex and
skewness parameter ηex, entering in the GPD, are

xex =
x

uη
and ηex ≡ ∆+

P ex
+

=
1
u
. (72)

The support property of the resulting GPD

Ht−channel(x, η)

∝ x

|η|

∫ 1

−1
du sign(uη)φ(u) (73)

×
∫ 1

−1
dy
∫ 1−|y|

−1+|y|
dz δ(x− η[uy + z])F t−cannel

π (y, z)

can be deduced from the DD representation. It only con-
tributes in the “exclusive” region, since for the “inclusive”
region we find |x/η| > 1 ≥ |uy + z|. Time reversal in-
variance combined with hermiticity requires that φ and
F t−channel

π (y, z) are symmetric in u and z, respectively.
Consequently, the exchange GPD is also symmetric in x
and the polynomiality condition is satisfied in general. For
the lowest moment we have the normalization:∫ 1

−1
dxHt−channel(x, η) ∝ (74)

∫ 1

−1
du |u|φ(u)

∫ 1

−1
dyy
∫ 1−|y|

−1+|y|
dz F t−channel

π (y, z) .

Remembering that the integral over z gives the parton den-
sities of the pion, i.e., qπ(y)/y, we obviously establish a link
between “exclusive” t-channel contributions and the par-
ton picture. Again the total sea quark contribution qseaπ (y)
is antisymmetric in y and, thus, it drops out in the sum
rules (64) and (65) and also for higher moments (which
are even). Such an I = 1 isospin exchange contribution
is “filtered” out for an isoscalar target; however, it might
be important for other targets or dissociation processes.
Note that for an isoscalar target, resonance exchange con-
tributions appear, like the famous ρπγ exchange current.

We should add that in such a case also contact terms, de-
picted in Fig. 3c, have to be included, which for instance
are given by∫

dκ
2π

eiκP+x〈N(P1/A+∆/2)π(∆/2)|ψ̄i(−κn)

×γ+ψi(κn)|N(P1/A)〉
∣∣∣
η=

∆+
P+

. (75)

Moreover, Lorentz invariance requires that virtual nucleus
anti-nucleus states contribute to the nucleon GPD. An
example is depicted in Fig. 3d and its matrix element reads∫

dκ
2π

eiκP+x〈Ω|ψ̄i(−κn)γ+ψi(κn)|N(p1)N(p2)〉
∣∣∣
η=

∆+
P+

.

(76)

It is far beyond the scope of this paper to establish a closer
link between the effective forces of nuclei and the funda-
mental degree of freedom in QCD; however, our discussion
shows that GPDs are an appropriate tool for this task.

Based on a “popular” model for the reduced proton
GPDs, we present now our model for a scalar nucleus. To
implement the support properties we deal with the DD
representation [1, 2] at a given input scale Q = Q0:

Hi(x, η)

=
∫ 1

−1
dy
∫ 1−|y|

−1+|y|
dz δ(x− y − ηz)qi(y)π(|y|, z; bi)

+sign(η)Di(x/η) (77)

and adopt Radyushkin’s proposal for the factorization of
the DD into a forward parton density qi(y) given at the
input scale Q0 and a profile function

π(y, z; b) =
Γ
(
b+ 3

2

)
√

πΓ (b+ 1)

[
(1 − y)2 − z2

]b
(1 − y)2b+1 , (78)

which is normalized to 1:∫ 1−|y|

−1+|y|
dz π(|y|, z; b) = 1. (79)

Here the free parameter b models the skewness effect that
arises from the x-shape of GPDs for a given value of η. In the
limit b → ∞ the GPDs are independent of η and are simply
given by qi(x) itself. For the unpolarized parton densities of
the proton we will take the MRS A′ parameterization [46],
given at the input scale Q2

0 = 4 GeV2, with ū = d̄ = s̄/2.
For the electromagnetic form factors we adopt here for
simplicity the following parameterization:

Fuval/A(∆2) = F dval/A(∆2) =
1
Z
FA(∆2) ,

F sea/A(∆2) = eBseaA2/3∆2
, (80)

where the slope A2/3Bsea of the sea quarks is defined in
such a way that Bsea only weakly depends on A. This is
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motivated by the fact that the nucleus density is rather
independent on A and, thus, we expect that the radius of
the sea quark distribution should scale with A1/3. For the
electromagnetic form factor we adopt the parameteriza-
tion of [47]:

FA(∆2) = Z

(
1 − 1

6
c2∆2

)−1

exp
{

1
6
∆2b2

}
, (81)

with b = 2.04×5.07 GeV−1 and c = 1.07A1/3×5.07 GeV−1.
There are a few comments in order. First the factor-

ization in ∆2 for medium values has no theoretical or ex-
perimental justification. In comparison with experimen-
tal data, which are presently measured at a mean value
of 〈−∆2〉 ∼ 0.1, . . . , 0.3 GeV2, the ∆2-dependences effec-
tively enter only the normalization of the CFFs via the
slope parameters. A second remark concerns the polyno-
miality property of the moments. In comparison to (50) we
choose for simplicity another DD representation in (77).
The prefactor x is now neglected and the highest possible
term ηn+1 for the nth odd x-moment is restored by the
so-called D-term. For detailed discussions on this subject
see [6, 48]. This D-term is antisymmetric in x and can-
not spoil the sum rule (62); however, it enters the sum
rule (67) and is discussed below. In our language we count
it as a sea quark contribution. The third remark concerns
the factorization of the DDs ansatz, that is inspired by an
intuitive picture and provides in general an enhancement at
the point x = ±η. Finally, we should comment on the me-
son exchange contributions. For a scalar target we will not
explicitly take them into account. They effectively enter
here the parameterization of the form factors. Moreover,
they have to vanish in the forward limit and, therefore,
they should be suppressed for valence like contributions
at small ∆2, while for sea-like contributions they can be
included in the antisymmetric D-term.

Let us finish this section by expressing the nucleus CFF
HA by the proton ones in the twist-two and twist-three
sector. From the ansatz (70) and the convolution7 (35), one
easily establish the following scaling law for the twist-two
CFF of a isoscalar nucleus

HA = A2 1 + ξN
1 + ξ

[
Q2

u +Q2
d

2Z
FA
(
∆2)(Huval

Q2
u

+
Hdval

Q2
d

)
(ξN )

+F sea/A(∆2)Hsea(ξN )

]
. (82)

Here Hi(ξN ) denotes the contribution that appears in the
decomposition of the proton CFF H = Huval +Hdval +Hsea

at∆2 = 0. For instance in leading order of αs, the sea quark
contribution reads in terms of the reduced antiquark GPDs
as follows:

Hsea(ξN )

=
∑

i=u,d,s

∫ 1

−1
dx

Q2
i

ξN − x− i0
2
{
H

i
(x, ξN ) −H

i
(−x, ξN )

}
.

7 Remove the index k for a scalar target.

Note that, as long we rely on the ansatz (70), this scal-
ing law is valid beyond the LO approximation, since the
hard-scattering coefficients have the following functional
dependence 1/ξC(x/ξ). It is interesting to note that in [36],
it was argued that theD-term contribution to the Compton
form factor, which is independent of xB, scales with A7/3.
Its contribution to the second gravitational form factor is

T 2(∆2) =
1
2

d2

dη2

∑
i=u,d,s,g

∫ 1

−1
dxxHi/A(x, η,∆2)

=
4
5
A2dA(∆2) . (83)

To study the D-term with respect to A and in relation to
the sea quark contribution per nucleon, we have rescaled
dA by A2. Based on the estimate in the same reference,
one finds that dA(∆2 = 0) slightly increases with A ≥ 8:

dA(∆2 = 0) = dQ/A(∆2 = 0) + dG/A(∆2 = 0)

≈ −0.2A1/3
(
1 + 3.8/A2/3

)
, (84)

dQ/N (∆2 = 0) ≈ −4.0 at µ ≈ 0.6 GeV , (85)

where the second result for the nucleonD-term in the quark
sector has been predicted by a model calculation within
the chiral soliton model [49, 50]. As it will be discussed
in Sect. 5.1, a present measurement of the charge asym-
metry on the proton target does not allow for a definite
conclusion of the D-term contribution. Unfortunately, we
might conclude that for a nucleus target, e.g., dA ≈ −1.3
for A = 200, this term will not induce a significant contri-
bution, too. Certainly, it is an important task to confront
this expectation with experimental measurements.

Employing the equation of motion, the twist-three
GPDs are decomposed in the so-called Wandzura–Wilczek
(WW) term, entirely expressed by the twist-two GPD H,
and the quark–gluon–quark GPD HqGq, carrying new dy-
namical information. The two twist-three GPDs enter in
the DVCS amplitude always in the same linear combina-
tion [6]:

Heff = Heff−WW + HqGq, (86)

where

HAeff−WW =
2

1 + ξ
HA

+2ξ
∂

∂ξ

∑
i=u,d,s

∫ 1

−1
dx

Q2
i

ξ + x
ln

2ξ
ξ − x− i0

(87)

×
{
Hi/A(x, ξ) −Hi/A(−x, ξ)

}
.

Using the ansatz (70), one easily derives the WW piece
in terms of the proton GPDs Hi. For instance, the to-
tal sea quark contribution reads in terms of the reduced
antiquark GPDs

2A2F sea/A(∆2)
[

1 + ξN
(1 + ξ)2

Hsea(ξN )
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+ ξ
∂

∂ξ

1 + ξN
1 + ξ

∑
i=u,d,s

∫ 1

−1
dx

Q2
i

ξN + x
ln

2ξN
ξN − x− i0

× 2
{
H

i
(x, ξN ) −H

i
(−x, ξN )

}]
, (88)

where ξN = Aξ/(1+ξ−Aξ) is to be considered as a function
of ξ. The analogous formula in the valence quark sector
follows by an appropriate replacement of the form factor
and GPDs together with the corresponding charge factors.

4.2 GPDs of spin-1/2 nucleus target

Analogous models for proton GPDs have been used in [7]
(for a detailed discussion of GPDs see [51]), and they are
consistent with all experimental data available at present
in the LO analysis, where evolution effects have not been
taken into account. It has been stressed in [52] that this is
not necessarily true in a complete analysis, performed in
NLO. The problem arises from the employed model of the
flavor singlet GPDs, especially from the gluonic ones. We
will skip this issue here and refer to the discussion in [7].
Due to the spin structure of the nucleon, one has to model
four different sets of GPDs:

F =
{
H,E, H̃, Ẽ

}
, (89)

corresponding to helicity conserved and non-conserved
form factors with even and odd parity. Note that for an
unpolarized target the dominant contribution arises from
the helicity conserved and parity even GPDs Hi. They
satisfy the constraints

lim
∆→ 0

Hi(x, η,∆2) = qi(x)

and ∫ 1

−1
dxHi(x, η,∆2) = F i

1(∆
2). (90)

For a longitudinally polarized target both H and H̃ are
important. The latter ones are related to the polarized sea
quark content and axial-vector form factors:

lim
∆→ 0

H̃i(x, η,∆2) = ∆qi(x)

and ∫ 1

−1
dx H̃i(x, η,∆2) = Gi

1(∆
2) , (91)

respectively. The helicity non-conserved GPDs E and Ẽ,
which decouple in the forward limit, obey the sum rules∫ 1

−1
dxEi(x, η,∆2) = F i

2(∆
2)

and ∫ 1

−1
dx Ẽi(x, η,∆2) = Gi

2(∆
2) . (92)

Perhaps they can be accessed in transversally polarized
target experiments. An essential observation was that the
ansatz (77) for the sea quarks, measured in the small xB
region, has to be suppressed by choosing bsea → ∞ and a
large slope Bsea ∼ 9 GeV2. This suppression then ensures
also the correct size of the single beam spin asymmetry
measured in fixed target experiments. For instance, the
mean value at HERMES is xB ≈ 0.1 and, thus, the value
of ξ ≈ 0.05 appearing in the argument of GPDs is rather
small. As we said, the contribution of sea quarks remains
relatively small with respect to the valence-like ones. If this
observation is implemented in the correct way within our
GPD model remains an open issue at present.

The helicity conserved GPDs Hi/A and H̃i/A of a nu-
cleus with spin-1/2 can be obtained from those of a proton
by means of (70). Unfortunately, not too much is known
about the structure of Ei/A and Ẽi/A, beside the pion-
pole contribution of Ẽi/A. For the parametrization of the
twist-three GPDs see [7, 53,54].

4.3 GPDs of spin-1 target

In this section we list the properties of the spin-1 GPDs
that are known and have already been given in [32]. For the
matrix element of the twist-two operators we use the anal-
ogous kinematical decomposition as for the CFFs in (33)
and (34). Combining hermiticity and time reversal invari-
ance tells us that the GPDs are real valued functions, which
respect the symmetry properties:

Hk(x, η) = Hk(x,−η) for k = {1, 2, 3, 5},
H4(x, η) = −H4(x,−η),

H̃k(x, η) = H̃k(x,−η) for k = {1, 2, 4},

H̃3(x, η) = −H̃3(x,−η). (93)

Note that H4(x, η) and H̃3(x, η) are antisymmetric with
respect to η, and, consequently, their moments are odd
polynomials in η.

From the definition of GPDs as Fourier transforms of
light-ray operators it follows that their lowest moment is
given by the form factors appearing in the vector or axial-
vector current, respectively. In the former case they are
related to the electromagnetic form factors∑

Qi

∫ 1

−1
dxHi/A

k (x, η,∆2,Q2) = Gk(∆2) (94)

for k = {1, 2, 3},∫ 1

−1
dxHi/A

k (x, η,∆2,Q2) = 0 (95)

for k = {4, 5},
or they have to vanish. For the deuteron the electromagnetic
form factors are known from experimental measurements
and their parameterization is given in Appendix A [55,56].
For a target with charge Ze we choose the normalization

G1(∆2 = 0) = Z , G2(∆2 = 0) = ZµA ,
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Gi
3(∆

2 = 0) = Z(µA + QA − 1), (96)

where ZµA is the magnetic moment and ZQA is the elec-
trical quadrupole moment. The latter is induced by non-
central nuclear forces. Its non-vanishing value, measured
for the deuteron, has been considered as evidence for the
role of pions in nuclear physics. More precisely, the one
pion exchange provides at larger distances the dominant
contribution to the potential, which is of the Yukawa type
and induces a D-wave admixture to the S-wave function.

The sum rules for parity odd GPDs read∫ 1

−1
dx H̃i

k(x, η,∆2,Q2) = G̃i
k(∆2) for k = {1, 2} ,

(97)∫ 1

−1
dx H̃i

k(x, η,∆2,Q2) = 0 for k = {3, 4} . (98)

The two axial form factors G̃i
k(∆2) with k = {1, 2} are

defined by the matrix element of the current j5,i
µ = ψ̄i(0)

× γµγ
5ψi(0) with flavor i:

J5,i
µ = iεµε∗

2ε1P G̃i
1(∆

2)

−
iεµ∆Pε1 ε

∗
2 · P + iεµ∆Pε∗

2
ε1 · P

M2
A

G̃i
2(∆

2) , (99)

In principle they, i.e., certain linear combinations with re-
spect to the flavor number, can be measured due to the
weak interaction; however, to the best of our knowledge
this has not been done yet.

First we consider the forward limit in whichH2, H3, H4

as well as H̃2, H̃3, H̃4 decouple from the Compton ampli-
tude and, thus, are not measurable in deep-inelastic scat-
tering. This does not mean that the functions in question
vanish by themselves. The remaining three functions are
expressed in terms of parton densities

qi/A(x) ≡ H
i/A
1 (x, η = 0, ∆2 = 0)

=
1
3
{
q+1(x) + q−1(x) + q0(x)

}
,

δqi/A(x) ≡ H5(x, η = 0, ∆2 = 0)

= q0(x) − 1
2
{
q+1(x) + q−1(x)

}
, (100)

∆qi/A(x) ≡ H̃
i/A
1 (x, η = 0, ∆2 = 0) = q+1

↑ (x) − q−1
↑ (x),

where qΛ = qΛ
↑ + qΛ

↓ . Here qΛ
↑ (x) is the probability to find

a (anti)quark with momentum fraction x > 0 (x < 0)
and positive helicity in the target of helicity Λ. Note that
these definitions contain both quark (x ≥ 0) and antiquark
(x ≤ 0) contributions with the following sign conventions:

q(x) = −q(−x) , δq(x) = −δq(−x) ,
∆q(x) = ∆q(−x), for x ≥ 0. (101)

The combination of quark distributions in H5 enter the
structure function b1, measurable in deeply inelastic scat-
tering on a polarized spin-1 target. The sum rule (98)

then induces∫ 1

−1
dx δq(x) = 0 =⇒

∫ 1

0
dx δqval(x) = 0 . (102)

To obtain the second sum rule for the valence quarks we
employed the antisymmetry property of the sea quarks.
This relation then is converted to a sum rule for b1,∫ 1

0
dx b1(x) = 2

∑
i=u,d,s

e2i

∫ 1

0
δqi(x)dx , (103)

which vanishes for an unpolarized quark sea [57]. Consid-
ering the deuteron as composed of almost free nucleons
induces a vanishing ratio b1/F1 [28]. The first preliminary
measurement from the HERMES collaboration [58] indi-
cates a tensor asymmetry, Azz = −2b1/3F1, that strongly
depends on xB. It is compatible with zero in the valence
quark region, but significantly positive and negative for
large and small xB, respectively. Since we are in the follow-
ing interested in the valence quark region, we set δqi(x) =
0. Consequently, this simplifies the spin content of the un-
polarized quark distributions

q0(x) =
1
2
{
q+1 + q−1} (x)

=⇒ q(x) =
1
2
{
q+1 + q−1} (x) . (104)

Let us now discuss the modelling of GPDs. In this paper
we only consider numerical estimates for an unpolarized or
longitudinally polarized target, in which H2, H4, H̃2, H̃3,
and H̃4 are relatively suppressed by ξ ∼ (xB/2A) or τ =
∆2/4A2M2

N in the DVCS amplitude and will be neglected.
In the following we consider the remaining GPDs Hi/A

1 ,
H̃

i/A
1 , Hi/A

3 , and Hi/A
5 .

For the GPDs Hi/A
1 and H̃

i/A
1 we employ the scaling

relation (70) to connect them to the proton GPDs Hi and
H̃i, cf.(56) and (57). For the latter we will neglect the
D-wave admixture, which provides in the forward limit
for the deuteron a few percent effect. To implement the
support properties of GPDs as well as the reduction to the
parton densities in a simple manner we again employ the
DD representation{

Hi
1

H̃i
1

}
=
{
Gi

1

G̃i
1

}
(∆2)

∫ 1

−1
dy
∫ 1−|y|

−1+|y|
dz δ(x− y − ηz)

×
{
qi(y)π(|y|, z; bi1)
∆qi(y)π(|y|, z; b̃i1)

}
, (105)

where a possible D-term is neglected. The partonic form
factors are normalized to 1 and for an isoscalar target
we choose

Guval
1 (∆2) = Gdval

1 (∆2) =
1
Z
G1(∆2)

1
Z
G2(∆2) . (106)

Analogous to the scalar case, cf.(64), this choice ensures
that the sum rules (94) are satisfied, where again the sea
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quarks do not contribute. Inspired by the counting rules,
we take for the deuteron a partonic sea quark form factor
with a rather simple parameterization

Gsea
1 (∆2) =

(
1 +

2τ
3

Qsea
)(

1 − ∆2

m2
sea

)−6

, (107)

where the free parametersm2
sea = 6/Bsea, expressed by the

slope Bsea of the “charge” form factor, and the “quadru-
pole” moment for sea quarks are specified below. Although
theoretical considerations predict also a rather complex
shape for the axial form factor, see [59] and references
therein, we will use the simple parameterization

G̃i
1(∆

2) =

(
1 − B̃i

5
∆2

)−5

for i =
{
uval, dval} , (108)

G̃i
1(∆

2) =

(
1 − B̃i

6
∆2

)−6

for i = {usea, dsea, ssea} ,

for the partonic form factors in the small −∆2 region.
The normalization G̃i

1(∆
2 = 0) = 1 ensures the correct

reduction to the forward limit.
As mentioned above, the quadrupole moment arises

from a pure bound state effect, successfully explained by
the one pion exchange and essentially given by the matrix
element sandwiched between the S- and D-wave states
of the deuteron. As stated before, exchange and contact
I = 1 isospin contributions drop out and so the dominant
contribution should arise from the overlap

H
i/d
3 ∼

∫
dκ
2π

eiκP+x〈d(P2,
3D1)|ψ̄i(−κn)

×γ+ψi(κn)|d(P1,
3S1)〉

∣∣∣
η=

∆+
P+

. (109)

Certainly, we have to include the interaction between both
nucleons. For the integrated GPD, i.e., the form factor G3,
one can write the form factor as a product of the isoscalar
nucleon form factor and the so-called body form factor. The
latter mainly arises due to the overlap of D- and S-waves
and alters the ∆2-dependence of the isoscalar form factor.
An extension of this approach to GPDs has been proposed
in [35], whereH3 is essentially given as a convolution of the
isoscalar GPD, modelled as H iso = (Hu +Hd)/2. On the
other hand,H3 is probing the binding force of the deuteron,
and as we know from deep-inelastic scattering, this effect
rather depends on the value of xB. For GPDs the situation
is rather complex and at present we have no calculation
or model available that allows us to gain deeper insight
in this problem. Thus, we consider two extreme cases and
discuss their consequences in the next section.
(1) We assume that H3 arises from the binding forces be-
tween “partons” that carry either rather large or small mo-
mentum fractions. Thus, one might expect that such effects
only slightly influence DVCS observables at the present
fixed target experiments. Therefore, we set for moderate
values of xB the CFF to zero:

H3 = 0 for 0.1 ≤ xB ≤ 0.3 . (110)

(2) In the convolution modelH1 andH3 are both essentially
determined by the isoscalar GPD H iso. So we equate the
reduced GPDs H1 and H3:

H3(x, η) = H1(x, η) . (111)

Finally, we have to specify H5. The simplest choice to
satisfy the sum rule (95) is to set H5 to zero. In the va-
lence quark region this is according to the knowledge of
the parton densities δqi that arises from the measurement
of the tensor polarization, discussed above. Alternatively,
we could also take an antisymmetric function in x that re-
produces in the forward limit the experimental constraints
for δqi.

5 Estimates for observables

In Sect. 5.1 and 5.2 we give analytical and numerical es-
timates for the size of the unpolarized cross section, the
beam spin asymmetry

ALU(φ) =
dσ↑(φ) − dσ↓(φ)
dσ↑(φ) + dσ↓(φ)

, (112)

the longitudinally polarized target spin asymmetry

AUL(φ) =
dσ⇑(φ) − dσ⇓(φ)
dσ⇑(φ) + dσ⇓(φ)

, (113)

as well as for the charge asymmetry of the unpolarized
cross section

AC(φ) =
dσ+(φ) − dσ−(φ)
dσ+(φ) + dσ−(φ)

. (114)

Moreover, for a spin-1 target we consider also the beam
spin asymmetry

AL±(φ) (115)

=
dσ↑⇑(φ) + dσ↑⇓(φ) − dσ↓⇑(φ) − dσ↓⇓(φ)
dσ↑⇑(φ) + dσ↑⇓(φ) + dσ↓⇑(φ) + dσ↓⇓(φ)

and the tensor polarization

Azz(φ) =
dσzz

3dσunp
, dσzz ≡ dσ⇑ + dσ⇓ − 2dσ⇒ ,

dσunp ≡ 1
3
(
dσ⇑ + dσ⇓ + dσ⇒) , (116)

where ⇑, ⇓, and ⇒ denote the magnetic quantum num-
bers Λ = {+1,−1, 0} for a longitudinally polarized target.
We give estimates for HERMES and (upgraded) JLAB
kinematics for a lepton beam of E = 27.6 GeV and E =
6 (12) GeV, respectively.

The single spin and charge asymmetries are dominated
by the first harmonics of the interference term (27), which
arise at twist-two level, while for the tensor polarization
the squared BH term dominates in the charge even sector.
All observables are contaminated by O(1/Q) suppressed
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effects, induced by other harmonics in both the interfer-
ence and squared DVCS term or from pure kinematical
effects: higher harmonics of the squared BH term (25) in
the denominator and an additional φ-dependence due to
the BH propagators P1P2(φ). We found that higher twist-
three harmonics are small in the WW approximation [7].
For the charge asymmetry also a “constant” contribution
arises in the interference term, which is completely deter-
mined by the twist-two GPDs. It can be relatively large
with respect to the dominant cos(φ) term, since in contrast
to higher harmonics it does not vanish at the kinematical
boundaries. Certainly, both the size of asymmetries and
their power suppressed contamination depends on the ratio
of DVCS to the BH amplitude, which is estimated to be8

T DVCS

T BH ∼ A

Z

√
−(1 − y)∆2

y2Q2 . (117)

For HERMES kinematics with |∆2| < 0.3 GeV2, xB ∼ 0.1,
and Q2 ∼ 2 GeV2, i.e., y ∼ 0.5, the ratio is T DVCS/T BH <
0.5A/Z. For JLAB the value of y is typically larger. This
results in a stronger suppression of the DVCS amplitude,
even for a smaller photon virtuality. We realize that for
HERMES kinematics the ratio of interference to squared
BH term is not necessary small, which is obviously con-
sistent with the measurement of sizable beam spin and
charge asymmetries. However, we have maybe overesti-
mated the ratio (117). If the sea quark contribution is
not yet dominant in this fixed target kinematics, we might
have an additional suppression by a factor

√
xB. Indeed, the

measurement of the charge asymmetry for a proton target
shows that the real part of the interference term is sup-
pressed by a factor of about 10. The unpolarized squared
BH amplitude, which can be taken into account exactly, is
dominated by its “constant” term, while higher harmonics
are suppressed by the factor K ∼

√
−(1 − y)∆2/Q2.

Since we expect, in the kinematics we are interested in,
that the unintegrated asymmetries (112), (113) and (114)
are dominated by the zero harmonic of the squared BH and
the first ones of the interference term, the φ-dependences of
the BH propagators will almost cancel. Thus, their Fourier
series read

ALU(φ) = sin(φ′
γ)A(1)

LU + . . . ,

AUL(φ) = sin(φ′
γ)A(1)

UL + . . . ,

AC(φ) = A
(0)
C + cos(φ′

γ)A(1)
C + . . . , (118)

where the Fourier coefficients are proportional to certain
linear combinations of twist-two CFFs, contaminated by
1/Q2-power suppressed contributions. For the charge
asymmetry AC(φ) we included also the “constant” twist-
three contribution, discussed above. To coincide with the
definitions, used by the HERMES and CLAS collabora-
tions, we wrote the Fourier expansion with respect to the

8 This is based on the assumption that the CFF scales like
A2/xB as it follows from (70) together with the small xB be-
havior of the sea quarks. In the valence quark region we expect
even a larger suppression.

azimuthal angle of the real photon φ′
γ = π −φ for a frame

in which the z-axis points in the direction of the virtual
photon momentum. This convention affects only the sign
of A(1)

C . The asymmetries of the φ′
γ integrated cross sec-

tions, e.g.,

ALU =
2
∫ 2π
0 dφ′

γ sin(φ′
γ)
(
dσ↑ − dσ↓)∫ 2π

0 dφ′
γ (dσ↑ + dσ↓)

�
2
∫ 2π
0 dφ′

γ sin2(φ′
γ)/P1P2(φ′

γ)∫ 2π
0 dφ′

γ 1/P1P2(φ′
γ)

A
(1)
LU , (119)

are influenced by the angular dependence of the BH propa-
gators and are generally smaller than the lowest harmonic
of the Fourier expansion (118). Moreover, the dependence
on the kinematical variables can be altered. Note also that
for xB, ∆2, or Q2 integrated asymmetries, the mean value
for the various parts of the leptoproduction cross section
can be quite different.

5.1 Analytical approximation
in the valence quark region

The lengthy expressions for the Fourier coefficients make
it rather hard to interpret future measurements in terms
of GPDs. Thus, it would be instructive to have an approx-
imation at hand that serves as a guide for adjusting model
parameters by using efficient numerical codes. This can
be done for the observables and kinematics, we discussed
above. For instance, the beam spin asymmetry (112) can
be simplified to

ALU(φ) ∼ ±xA

y

sI
1,unp

cBH
0,unp

sin(φ) with
{

+ for e−,
− for e+,

(120)

where we neglected possible contamination of the squared
DVCS term. Moreover, for −∆min 
 −∆2 
 M2

A and
xB = AxA � 0.3 the Fourier coefficients can be drastically
simplified due to a rough approximation of kinematical
factors, i.e., we expand the Fourier coefficients cBH

0,unp and
sI
1,unp (see Appendix B) to zero order in xA and τ . However,

we have to pay special attention to terms that contain G3
and H3, since G3(∆ = 0) is enhanced by one order of
magnitude compared to the normalization of the other
two form factors. Thus, we take also τG3 and τH3 into
account and obtain for the beam spin asymmetry

ALU(φ) ∼ ±
xA(2 − y)

√
−∆2(1−y)

Q2

2 − 2y + y2 (121)

×
m
2G1H1 + (G1 − 2τG3)(H1 − 2τH3) + 2

3τG3H5

2G2
1 + (G1 − 2τG3)2

× sin(φ) .

To demonstrate that these considerations are more on a
rough quantitative level, we mention that the kinematical
prefactor 1 ≤ (2−y)/(2−2y+y2) ≤ (1+

√
2)/2 should for
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consistency also be neglected, which can induce a reduction
of 21%. In the following we take it into account. One realizes
that the single beam spin asymmetry is proportional to a
linear combination of nucleus GPDs multiplied with xA =
xB/A. Since for large A the form factors scale with Z and
the CFFs with A2, this asymmetry does not scale with A;
however, besides bound state effects it only depends on the
ratio A/Z. It is rather surprising that bound state effects
enter already the interference term for the unpolarized
target not only due to a possible modification of the scaling
relation for H1, but also directly by the appearance of H3
and H5.

In the case that the beam spin asymmetry is measured
on an incomplete unpolarized target, where only over the
polarization states with Λ = ±1 is summed, the prediction
differs from the asymmetry (121):

AL±(φ) (122)

∼ ±xA

y

sI
1,unp − 1

3s
I
1,LLP

cBH
0,unp − 1

3c
BH
0,LLP

sin(φ) with
{

+ for e−,
− for e+,

and it reads in our kinematical approximation

AL±(φ) ∼ ±
xA(2 − y)

√
−∆2(1−y)

Q2

2 − 2y + y2 × (123)

�m
2G1

(H1 − 1
3H5

)
+ 2(G1 − 2τG3)

(H1 − 2τH3 − 1
3H5

)
2G2

1 + 2(G1 − 2τG3)2

× sin(φ) .

The approximation of the unpolarized charge asymme-
try (114)

AC(φ) ∼ xA

y

cI0,unp + cI1,unp cos(φ)
cBH
0,unp

+ . . . (124)

is obtained in the analogous manner. The dominant twist-
two harmonic is given as the real part of the same linear
combination of GPDs as in the beam spin asymmetry (121):

AC(φ) ∼
xA

√
−∆2

Q2 (1 − y)

y
× (125)

	e
2G1H1 + (G1 − 2τG3)(H1 − 2τH3) + 2

3τG3H5

2G2
1 + (G1 − 2τG3)2

× cos(φ) + . . . .

Also this asymmetry is nearly independent on A. As noted
before, the constant term only depends on twist-two GPDs
and does not vanish at the kinematical boundaries. In our
approximation it is

cI0,unp

cI1,unp
� 2 − y√

1 − y

√
−∆2

Q2 . (126)

For a scalar target the exact relation does not depend on
GPDs [6], while for a spin-1/2 target only a xA suppressed

dependence appears [7, 53]. For a spin-1 target the anal-
ogous relation is unknown at present. We add that the
charge asymmetry for an incomplete unpolarized target

AC±(φ) (127)

∼ xA

y

cI0,unp − 1
3c

I
0,LLP

cBH
0,unp − 1

3c
BH
0,LLP

+
xA

y

cI1,unp − 1
3c

I
1,LLP

cBH
0,unp − 1

3c
BH
0,LLP

cos(φ) + . . .

(compare with (122) and (124)) reads in leading power of
the formal 1/Q expansion

AC±(φ)

∼
xA

√
−∆2

Q2 (1 − y)

y
×

�e
2G1

(H1 − 1
3H5

)
+ 2(G1 − 2τG3)

(H1 − 2τH3 − 1
3H5

)
2G2

1 + 2(G1 − 2τG3)2

× cos(φ) + . . . .

Here the same linear combination of CFFs as in the beam
spin asymmetry (123) appear.

The single spin asymmetry (113) for longitudinally po-
larized target,

AUL(φ) (128)

� ±xA

y

sI
1,LP

cBH
0,unp

sin(φ) + . . . with
{

+ for e−,
− for e+

is mainly governed by H̃1:

AUL(φ) ∼ ±
xA

√
−∆2

Q2 (1 − y)

y

×
m
3(G1 − τG3)H̃1 + 3xA

2 G2(H1 − τH3 − H5)
2G2

1 + (G1 − 2τG3)2

× sin(φ). (129)

Since the polarized quark contribution is relatively small
compared to the unpolarized ones and the latter increase
faster with growing 1/xB (in the small xB region), we in-
cluded also a xA suppressed term that is proportional to
H1 − τH3 − H5.

For a spin-1 target another quite interesting observable
is the tensor polarization asymmetry (116). Their mea-
surement requires a longitudinally polarized target. This
asymmetry is dominated by the squared BH contribution,
which provides a dominant constant term that is propor-
tional to τG3:

Azz(φ) =
−4τG3 (G1 − τG3)

2G2
1 + (G1 − 2τG3)

2 (130)

±
xA

√
−∆2

Q2 (1 − y)

y
3G1

×
[
cos(φ) × . . .+ λ

y(2 − y)
2 − 2y + y2 sin(φ) × . . .

]
+ . . .
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Here the ellipsises, proportional to the first harmonics,
arise from a Taylor expansion with respect to −∆2/Q2

and stand for the real and imaginary part of a certain
linear combination of CFFs:

H1 +
2
3
H5 − G1

2G2
1 + (G1 − 2τG3)

2 (131)

×
(

2G1H1 + (G1 − 2τG3) (H1 − 2τH3) +
2τ
3
G3H5

)
.

The third term in (131) comes from the power expansion
of the denominator. We note that the cos(φ) term that
stems from the BH Fourier coefficients cBH

1,unp and cBH
1,LLP do

finally not contribute in our approximation. Consequently,
to extract the interference term from a measured tensor
polarization Azz(φ) the constant squared BH contribution
in (130) has to be subtracted. To avoid such a subtraction,
we can alternatively form the tensor asymmetry from the
charge odd part of the cross section:

ACzz(φ) =
dσe+

zz − dσe−
zz

3dσe+
unp + 3dσe−

unp
(132)

� −xA

y

cI1,unp − cI1,LLP

cBH
0,unp

cos(φ) + . . . ,

where the ellipsis includes a constant term and higher har-
monics. Another possibility is to use a polarized beam and
to form the asymmetry

ALzz(φ) =
dσzz(λ = +1) − dσzz(λ = −1)

3dσunp(λ = +1) + 3dσunp(λ = −1)
(133)

� ±xA

y

sI
1,unp − sI

1,LLP

cBH
0,unp

sin(φ) + . . . with
{

+ for e−,
− for e+,

which is dominated by the sin(φ) harmonics of the inter-
ference term only. These two asymmetries allow one to
explore the real and imaginary part of the following linear
combination of GPDs:{
ALzz

ACzz

}
(φ) ∼

√
−∆2

Q2 (1 − y) 2xA

{
∓1

−1/y

}{
sin(φ)
cos(φ)

}

×
{


m
	e

}
G1 (τH3 + H5) + τG3

(
H1 − 2τH3 − 1

3H5
)

2G2
1 + (G1 − 2τG3)2

.

(134)

It is now instructive to compare these results with those
for a spin-1/2 or -0 target and to explore its dependence
on GPDs, which are of course model dependent. The anal-
ogous predictions simply follow by setting G3, H3, and H5
to zero and by the replacements:

G1 →
{
F1

F

}
, G2 →

{
F1 + F2

0

}
,

H1 →
{

H
H

}
, H̃1 →

{
H̃
0

}
for spin-

{
1/2,
0.

First we like to recall that the sum rules, e.g., (94), suggest
that the ∆2-dependence of the valence-like GPDs is given
by Gi and F1 (or the scalar form factor F ), respectively.
Furthermore, the analyses of the H1, HERMES and CLAS
DVCS data for a proton target in terms of the oversimplified
model, given in Sect. 4, at LO indicate that the unpolarized
sea quark contribution is compared to the forward case
additionally suppressed9. We suppose that this qualitative
property holds also true for the nucleus GPDs. Therefore,
we neglect in the valence region the sea quark contribution
and model the remaining GPDs as a product of form factor
and valence quark distributions10. In LO of perturbation
theory we find for nuclei targets

xA
mHA(ξ,∆2)
FA(∆2)

∼ πxA

{
Q2

uq
uval/A(ξ) +Q2

dq
dval/A(ξ)

}
∼ π

ZQ2
u +NQ2

d

Z
xB

{
quval

(
xB

2 − xB

)
+ qdval

(
xB

2 − xB

)}
,

(135)

expressed in terms of the quark densities of the proton.
The analogous formula holds true for the spin-1/2 case
and also for the H1 contribution of spin-1 targets.

The beam spin asymmetry for the positron scattering
off a proton target is

ALU(φ) ∼ −
√

−∆2(1 − y)
Q2 πxB (136)

×
{
Q2

uq
uval(ξN ) +Q2

dq
dval(ξN )

}
sin(φ)

∣∣∣∣∣
ξN= xB

2−xB

.

The ratio of beam spin asymmetries for a spin-0 or -1/2
nucleus with Z � N to the proton is

AA
LU(φ)

ALU(φ)
∼
(
Q2

u +Q2
d

) {
quval(ξN ) + qdval(ξN )

}
Q2

uq
uval(ξN ) +Q2

dq
dval(ξN )

∣∣∣∣∣
ξN= xB

2−xB

for J = {0, 1/2} . (137)

For a spin-1 nucleus we would have the same prediction, if
Hval

3 = G3/G1Hval
1 holds true. However, if Hval

3 is negligible
in this kinematics, it follows from (121) that there is an
additional ∆2-dependence, which is crucial:

AA
LU(φ)

ALU(φ)
∼ 3 − 2τG3/G1

2 + (1 − 2τG3/G1)2

9 We remind the reader that ξN ≈ xB/(2 − xB) and already
for ξN ∼ 0.05 one finds in deep-inelastic scattering an almost
equal contribution of valence and sea quarks.
10 Here we neglect any skewness effect. For the DD model,
introduced in Sect. 4, skewness effects would provide an en-
hancement of the CFFs. Strictly spoken, it is not known what
caused the observed suppression of sea quark contributions and
thus the simple ansatz for the DDs together with a rather large
slope parameter might be questionable.
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×
(
Q2

u +Q2
d

) {
quval(ξN ) + qdval(ξN )

}
Q2

uq
uval(ξN ) +Q2

dq
dval(ξN )

∣∣∣∣∣
ξN= xB

2−xB

for J = 1 ,

AA
L±(φ)

ALU(φ)
∼ 3 − 3τG3/G1

2 + 2(1 − τG3/G1)2
(138)

×
(
Q2

u +Q2
d

) {
quval(ξN ) + qdval(ξN )

}
Q2

uq
uval(ξN ) +Q2

dq
dval(ξN )

∣∣∣∣∣
ξN= xB

2−xB

.

Taking xB ∼ 0.1, we expect from the parameterization of
parton densities that dval/uval ∼ 0.5. For∆2 = −0.2 GeV2,
Q2 = 2.5 GeV2, and E = 27.5 GeV we estimate the beam
spin asymmetry for a proton target and the ratios (137)
and (138) for nuclei (Z � N) to be

ALU(φ) ∼ −0.29 sin(φ) , (139)

AA
LU(φ)

ALU(φ)
∼
{

5/3
1

}
for J =

{
{0, 1/2}

1

}
.

Our estimate for the sin(φ)-weighted asymmetry (119) is
ALU ∼ −0.23, while the ratios of beam spin asymme-
tries for different targets are unchanged. So we roughly
expect an enhancement of the beam spin asymmetry for
nuclei with spin-0 and -1/2, which simply arises from the
ratio of squared charges for an isoscalar to an isodou-
blet state and the u quark dominance. For a spin-1 tar-
get, one would expect the same. However, in the case
that H3 (and also H5) does not contribute the factor
(3−2τG3/G1)/(2+(1−2τG3/G1)2) gives a∆2 dependent
suppression. It decreases with growing |∆2| < 0.5 GeV2,
reaches its minimum at |∆2| ≈ 0.5 GeV2 with ≈ −0.1 and
then increases with growing |∆2|. Note the sign change
of the beam spin asymmetry, which occurs in the region
0.4 GeV2 < −∆2 < 0.7 GeV2.

In the following we confront our oversimplified esti-
mates for the φ-integrated beam spin asymmetry (119)
with preliminary HERMES data from the 2000 run, which
have been taken for proton, deuteron, and neon target [27]:

ALU = −0.18 ± 0.03 ± 0.03, 〈xB〉 = 0.12,

〈−∆2〉 = 0.18 GeV2, 〈Q2〉 = 2.5 GeV2 ,

ANe
LU = −0.22 ± 0.03 ± 0.03, 〈xB〉 = 0.09,

〈−∆2〉 = 0.13 GeV2, 〈Q2〉 = 2.2 GeV2 ,

Ad
L±U = −0.15 ± 0.03 ± 0.03, 〈xB〉 = 0.1, (140)

〈−∆2〉 = 0.2 GeV2, 〈Q2〉 = 2.5 GeV2 ,

where the first (second) error denotes the statistical (sys-
tematical) uncertainty. Here the notation Ad

L±U refers to
the fact that this value is obtained from two different data
sets of polarized and unpolarized deuteron target. Our
rather naive estimates give

ALU = −0.26 , ANe
LU = −0.34 ,

Ad
LU = −0.23 , Ad

L± = −0.21 , (141)

which are slightly higher than the experimental values.
Note that these numbers include uncertainties induced by
the kinematical approximation and, of course, due to the
simplification of GPDs. Compared to the beam spin asym-
metry on a proton target from the 1996/97 run

ALU = −0.23 ± 0.04 ± 0.03, 〈xB〉 = 0.11, (142)

〈−∆2〉 = 0.27 GeV2, 〈Q2〉 = 2.6 GeV2 ,

our naive analytical and numerical estimates, within a
certain model that contains also sea quarks and twist-
three corrections, give in both cases nearly the same val-
ues, ALU = −0.26 and ALU = −0.27, respectively. The
sea quark content gives an enhancement and the exact
kinematics at twist-three level a dumping, which results
finally in a similar prediction. Nevertheless, these num-
bers are rather model dependent and in fact by varying
the slope Bsea, b parameters, and adding dynamical twist-
three contributions by “hand” our prediction covered the
range 0.16 ≤ |ALU| ≤ 0.37 [7].

For JLAB kinematics with xB = 0.3 [0.2], E =
6 [12] GeV, ∆2 = −0.25 GeV2, and Q2 = 2.5 GeV2 the
quantitative estimates for proton, deuteron, and isoscalar
nuclei A target are

ALU ∼ 0.25 [0.3] ,

Ad
LU ∼ 0.2 [0.25] , (143)

AA
LU ∼ 0.35 [0.45] .

For the charge asymmetry, there are important differences
with respect to the beam spin asymmetry. First we recall
the non-negligible constant term. Moreover, this asymme-
try arises from the real part of the Compton amplitude
and so it is also sensitive to the D-term, which drops out
in the imaginary part11. At smaller values of xB the ratio
of real to imaginary part is

R =
	e F

m F � tan

(
[2αi − 1 − SF ]

π
4

)
(144)

+ pure “exclusive” contributions/
m F ,

where the signature SF = 1 for the CFFs {H, E , H1, . . . ,

H5} and SF = −1 for the set {H̃, Ẽ , H̃1, . . . , H̃4}. Here
we used the fact that the GPDs behave like H(ξ) ∝ ξ−αi

with αi > 0. Since αi ∼ 1/2 and αi > 1 for unpolarized
valence and sea quarks, respectively, we expect also for
larger values of xB that the valence and sea quarks give a
negative and positive correction, respectively:

Ri =
	e Hi


m Hi
=
{
< 0
> 0

}
for
{

valence quarks,
sea quarks.

(145)

11 A first discussion of the imaginary and real part of the
Compton amplitude in the context of field theory can be found
for instance in [60, 61]. The constant term in the real part,
which appears here due to the D-term, has been related to a
fixed pole in the language of Reggeization.
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A
A(1)
C

A
A(1)
LU

∼ 2 − 2y + y2

(2 − y)y

Ruvalquval +Rdvalqdval + 2Gsea
1

G1

[
1 − 2τGsea

3 (G1−2τG3)
Gsea

1 (3G1−2τG3)

]
Rsea 2

∑
i Q2

i qi

∑
i=u,d Q2

i

quval + qdval + 2Gsea
1

G1

[
1 − 2τGsea

3 (G1−2τG3)
Gsea

1 (3G1−2τG3)

]
2

∑
i Q2

i qi∑
i=u,d Q2

i

. (151)

The D-term contribution has been estimated to be nega-
tive, too, and will partially cancel the positive sea quark
contribution. All these terms enter the Fourier coefficient
A

(1)
C , defined in (118) with a reversed sign. Within our

factorized GPD ansatz, the HERMES data

AC(φ) = −0.05 ± 0.03(stat)

+ [0.11 ± 0.04(stat)] cos(φ′
γ) , (146)

for 〈xB〉 = 0.12, 〈−∆2〉 = 0.27 GeV2, 〈Q2〉 = 2.7 GeV2,
can be explained by two different scenarios:
(1) a small sea quark contribution and rather small or
no D-term;
(2) a large sea quark contribution and large negative
D-term.

The second scenario predicts a beam spin asymmetry
of ALU � −0.37, which is slightly larger than the beam
spin asymmetry of the 1996/97 run. So a definite conclu-
sion about the D-term not be drawn with present data.
However, we state: if high precision data will be available,
the ratio of charge asymmetry to beam spin asymmetry
allows us to pin down the D-term contribution. The mea-
sured ratio

A
(0)
C

A
(1)
C

= −
cI0,unp

cI1,unp
∼ −0.5 (147)

coincides with our estimate (126), which yields the value
≈ −0.65.

In both scenarios one expects that the valence quark
contribution dominates in the real part of the CFF H for
HERMES kinematics. The real part of this dominant CFF
for a proton and a scalar nuclei target are

xB	eH1(ξ,∆2)
F1(∆2)

∼ πxB
{
Q2

uR
uvalquval +Q2

dR
dvalquval

}
, (148)

xA	eHA(ξ,∆2)
FA(∆2)

∼ πxB

{
ZQ2

u +NQ2
d

Z

[
Ruvalquval +Rdvalquval

]}
,

where Ri and qi depend on ξN = xB/(2 − xB), ∆2, and
Q2. As above in the case of the imaginary part a similar
estimate holds true for a spin-1/2 nucleus target. For larger
value of xB, e.g. xB = 0.12 the asymptotic formula (144)
overestimates the size of the real part. In the MRS A′
parameterization we find Ruval(ξN = 0.065) ∼ −0.4 and
Rdval(ξN = 0.065) ∼ −0.25. So we expect, e.g., with Q2 =
2.7 GeV2 the following ratio of charge and single beam

asymmetries12 on a proton target:

A
(1)
C

A
(1)
LU

∼ 2 − 2y + y2

(2 − y)y
Q2

uR
uvalquval +Q2

dR
dvalqdval

Q2
uq

uval +Q2
dq

dval

∼ −0.8 , (149)

which is consistent with HERMES data. For an isoscalar
nucleus we expect a similar value:

A
A(1)
C

A
A(1)
LU

∼ 2 − 2y + y2

(2 − y)y
Ruvalquval +Rdvalqdval

quval + qdval

∼ −0.7 . (150)

However, these ratios should be smaller in reality, since
the sea quarks enter the numerator and denominator with
negative and positive sign, respectively.

The ratio (151) of charge to beam spin asymmetry for
a spin-1 target has a rather complex model dependence.
Even if we set Hval

3 and H5 to zero, we should worry about
the unknown “quadrupole” contribution H3, induced by
the sea quarks, see top of page. Here we have set for
simplicity Hsea

3 /Hsea
1 = Gsea

3 /Gsea
1 = 1 − µsea

d + Qsea
d and

assumed the same Rsea for all sea quark species. If the sea
quark contributions are small, we would have the same
ratio (150) as for an isoscalar nucleus with spin-0 or -1/2.

It is interesting that for larger values of xB the sign
of the real part of the CFFs might be changed. In our
model that happens for valence u [d] quarks at xB ∼ 0.3
[0.2], while the sign of sea quarks and D-term remains
the same. There is also a significant difference between
these contributions. While the real part of the sea quarks
is expected to drop rather fast with increasing xB, the
D-term gives a constant contribution. JLAB kinematics
would be suitable to explore this region and thus provide
more insight in the structure of GPDs, but unfortunately
no positron beam is available.

Now we come to the longitudinally polarized target spin
asymmetry. For a proton target the ratio of this target spin
to the beam spin asymmetry is

AUL(φ)
ALU(φ)

(152)

∼ 2 − 2y + y2

(2 − y)y

[
Q2

u∆q
uval +Q2

d∆q
dval

Q2
uq

uval +Q2
dq

dval
+
xB

2
F2

F1

]
.

12 This ratio has the advantage that the BH contribution and
partly the kinematical prefactors of the interference term drop
out and so it is after restoration of the y-dependence exact up
to the neglected squared DVCS term and the approximation of
the CFFs. H̃ and E CFFs, which are kinematically suppressed,
are still neglected.
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Both terms in the squared bracket on the RHS are positive
and become smaller13 with decreasing xB. So within our
simplifications we expect the same sign as for the beam
spin asymmetry and a rather small value for not so large xB
or small y. In the case of a isoscalar nuclei spin-1/2 target

AA
UL(φ)

AA
LU(φ)

∼ 2 − 2y + y2

(2 − y)y

[
∆quval +∆qdval

quval + qdval
+
xB

2A
FA

2

FA
1

]
,

(153)

the form factor dependent part will be suppressed by the
atomic mass numberA. As long as this term is not enhanced
due to a node in FA

1 (∆2
0) at given∆2

0, the ratio of polarized
to unpolarized quark distribution dominates and we expect
for xB ≈ 0.2, Q2 ≈ 2 GeV2 and HERMES [JLAB@12 GeV]
kinematics

AA
UL(φ)

AA
LU(φ)

∼ 2 − 2y + y2

(2 − y)y
∆quval +∆qdval

quval + qdval
∼ 0.5 [0.2] .(154)

If we neglect H3 and H5 CFFs, we find for an isoscalar
spin-1 target a similar prediction:

AA
UL(φ)

AA
LU(φ)

∼ 2 − 2y + y2

(2 − y)y
(155)

× G1 − τG3

G1 − 2τG3/3

[
∆quval +∆qdval

quval + qdval
+
xB

2A
G2

G1 − τG3

]
,

which differs from the previous cases by a ∆2 dependent
prefactor. Unfortunately, this ratio is also rather sensitive
to the details ofH3 andH5 GPDs, compare (121) and (129),
and so no definite estimate can be given.

Finally, we discuss the tensor polarization asymmetries.
In the case that H3 and H5, are small we find that these
asymmetries can be expressed by the charge and beam
spin asymmetries:

AA
Lzz(φ)
AA

LU(φ)
=
A

A(1)
Czz

A
A(1)
C

∼ 2
3

(−τ + 4ξτ − 3ξ2)G3

G1 − 2
3τG3

. (156)

For small values of −∆2 and ξ these ratios are rather small,
e.g., −∆2 = 0.2 [0.1] GeV2 and xB = 0.1 we find the num-
ber ∼ 0.2 [0.08]. A significant deviation from this prediction
would indicate that H3 and/or H5 are comparable in size
to H1. For instance, if H5 would be small and assuming
that H3 = G3/G1H1 this ratio is roughly double as large.

5.2 Numerical results

In the previous section we tried to convince the reader
that a rather simple GPD ansatz explains the measured
13 The ratio of form factors is for small value of |∆2| given by
the anomalous magnetic moment F2/F1 ≈ 1.793(1−∆2/1.26),
while the ratio of polarized to unpolarized quarks is estimated
from the measured ratio of polarized to unpolarized structure
functions in deep-inelastic scattering which behave like

√
xB

for increasing xB, e.g., g1/F1 ∼ 0.2 for xB ∼ 0.1.

Table 2. Parameter sets for H and H1 GPDs of a spin-0
nucleus, proton, and deuteron

All targets Proton Neon Deuteron
model bval bsea Bsea κsea Bsea Bsea

[GeV−2] [GeV−2] [GeV−2]
A 1 ∞ 9 0 9 20
B ∞ ∞ 9 −3 12 30
C 1 1 5 0 6 15

DVCS asymmetries. To avoid a misunderstanding, we do
not claim that our estimates are precise. Rather we expect
that more realistic GPD models yield large deviations from
these naive estimates. Nevertheless we like to give an im-
pression of this model dependence in the following. We
also have to keep in mind that the kinematical approxima-
tions are rather rough. In the following we correct this and
take the exact expressions for the BH cross section and K
factor, defined in (23) and the full ξ and ∆2-dependences
in the twist-two predictions of interference and squared
DVCS term.

First we consider the beam spin asymmetry measured
at HERMES. For the proton target we rely on the GPD
models A, B, and C, employed in [7]. The parameters of
these three models are listed in Table 2. Compared to
model A, the sea quarks are suppressed and enhanced in
model B and C, respectively, by a larger slope Bsea and
bsea → ∞. We also suppress in model B the valence quarks
by taking bval → ∞. At twist-three level the models A
and C are based on the WW approximation, while in the
model B quark–gluon–quark GPDs are added by “hand”;
see [7] for details. We neglect the D-term, which affects
the observable in question only sligthly at twist-three level.
Taking the mean values of the 2000 data (140), the φ-
integrated beam spin asymmetry (119) at twist-two and
twist-three level reads

ALU =
{

[−0.29,−0.25,−0.41]
[−0.29,−0.20,−0.37]

}
(157)

for
{

twist-two
twist-three

}
and models [A,B,C].

We realize that the model B predictions are consistent
with the experimental data, while the model A gives a
slightly too high value for |ALU|. We recall that both model
predictions are consistent with the 96/97 data. The large
value of the model C prediction is caused by the sea quarks.

Now we present the predictions for the neon target
at twist-two and -three level. Here again the sea quark
contributions are relatively suppressed in model B and C,
see Table 2, and we again add for the B model a quark–
gluon–quark GPD contribution by “hand”, in the same
way as it has been done for the proton. We find with these
models

ANe
LU =

{
[−0.30,−0.28,−0.54]
[−0.34,−0.24,−0.49]

}
(158)

for
{

twist-two
twist-three

}
and models [A,B,C] .
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Fig. 4a–d. Model dependent
estimates for the cross sec-
tion, integrated over the az-
imuthal angle φ, for the scat-
tering of a positron [elec-
tron] beam on a deuteron tar-
get at Ee = 27.6 [12] GeV,
Q2 = 2.5 [2] GeV2, ∆2 =
−0.1 GeV2 a[c] and ∆2 =
−0.3 GeV2 b[d]. The squared
BH contribution is displayed as
bold dotted line, the DVCS cross
section as dash-dotted (dotted)
and the leptoproduction cross
section as solid (dashed) curves
for model B (model C)

Again the model B prediction is on the 1σ level consistent
with the experimental data (141).

Now we discuss estimates for an unpolarized and lon-
gitudinally polarized deuterium target in more detail. The
models for the reduced deuteron GPD H1 are listed in
Table 2 and they share the same qualitative features as
described above. The D-term contributions are neglected
and we set for simplicity µsea = 1 and Qsea = 0. To illus-
trate possible bound state effects, we sometimes take H3
into account, equating the reduced GPD with that ofH1, or
alternatively H5, equating it with the antisymmetric part
of H1(x, η,∆2). These two additional sets will be denoted
with a prime or a hat, respectively. As mentioned above,
we neglect the kinematically suppressed contributions H2,
H4, H̃2, and H̃3. The model of H̃1 is based on the GS A pa-
rameterization [62] with b̃sea = 1. If not stated otherwise,
we equate the slope parameters B̃val = B̃sea = 20 GeV−2,
which is roughly the size of the slope parameter for the
charge form factor GQ.

Let us first consider the size of the unpolarized cross sec-
tions for the positron and electron scattering off a deuteron
target at HERMES and JLAB kinematics, respectively. It
is demonstrated in Fig. 4 that at larger value of xB, i.e.,
smaller value of y, the leptoproduction cross section can
be dominated by the DVCS one; however, its size is com-
parably small. With decreasing xB, the BH cross section
starts to dominate over the DVCS one, irrespectively of the
chosen GPD models. In model C the sea quarks also induce
a growing DVCS cross section due to an associated large
imaginary part in the DVCS amplitude. Typically, the ra-
tio of BH to DVCS cross section and the total cross section
is larger at JLAB compared to HERMES kinematics.

In Fig. 5 we show the model dependence for the pre-
dictions of the beam spin asymmetry AL±. In panel (a)
we confront them with the preliminary HERMES measure-
ment [27]. However, we remind the reader that the analysis
is based on two different data sets that, certainly, also con-
tain incoherent scattering events. Model A (dash–dotted)

gives a larger asymmetry than model B (dashed), caused
by the larger sea quark content of the former model. Note
that for the same reason, model C predicts an even larger
asymmetry, which is not displayed. If we take into account
the H3 contribution via the B′ model (dotted), the beam
spin asymmetry in panels (a), (b) and (d) is of the same
size as the model A predictions. It is displayed in panel
(c) that model A and B′ are distinguishable due to the
∆2-dependence. In the absence of H5 we observe for the
typical HERMES kinematics only a rather small difference
between the asymmetries ALU and AL±. The latter asym-
metry is sensitive to H5 and we find a large reduction for
the model B̂ (solid); see below (159). We recall that the
φ-integrated asymmetries, displayed in panels (b)–(d), are
smaller than the non-integrated asymmetries at φ = π/2.
This integration also changes the ∆2-dependence14. For
JLAB kinematics we find the same qualitative features,
where of course for electrons the sign of the asymmetry
is reversed. Let us add that within the model B we have
a slightly larger value than in our result (141) of the pre-
vious section, caused by both kinematical and sea quark
contributions. The other models induce the typical effects
we have already discussed:{

ALU

AL±

}
=
{

[−0.37,−0.26,−0.23,−0.34]
[−0.34,−0.24,−0.16,−0.34]

}
for model [A,B, B̂, B′] . (159)

These results will also be altered by twist-three contri-
butions, i.e., change of the normalization and excitation
of higher harmonics. A quantitative estimate of such con-
tributions is beyond the scope of this paper. One might
14 The unintegrated asymmetries (112) and (115) are roughly
spoken proportional to

√−∆2/Q2 and thus will constantly
decrease with decreasing |∆2|. For the integrated asymmetry
we rather observe a growth that comes from the φ integra-
tion, indicated in (119). Of course, in any case the asymmetry
vanishes in the limit ∆2 → ∆2

min.
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Fig. 5a–d. The beam spin
asymmetry AL±(φ) a, AL± as
function of xB b, −∆2 c, and
Q2 d [without evolution] for
the scattering of a positron on
a deuteron target at Ee =
27.6 GeV. The fixed kinemat-
ical variables are xB = 0.1,
Q2 = 2.5 GeV2, and ∆2 =
−0.2 GeV2, where the models
A (dash–dotted), B (dashed), B̂
(solid), and B′ (dotted) are spec-
ified in the text
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Fig. 6a–d. The longitudinal
target asymmetry AUL(φ) a
and c and AUL b and d versus φ
and xB, respectively. For HER-
MES a and b [JLAB@12 GeV c
and d] kinematics we take xB =
0.1 [xB = 0.2], −∆2 = 0.2 GeV2

and Q2 = 2.5 GeV2 as well
as employ the model A with
B̃val = B̃sea = 20 GeV−2 (dash–
dotted), B̃val = 30 GeV−2,
B̃sea = 10 GeV−2 (dashed),
B̃val = 10 GeV−2, B̃sea =
30 GeV−2 (dotted), and B̂ with
B̃val = B̃sea = 20 GeV−2 (solid)

expect a similar change as in the case of a proton target,
discussed in great detail in [7].

As discussed above, see also (155), the size of the lon-
gitudinal target spin asymmetry AUL is rather model de-
pendent and allows one to access the imaginary part of the
parity odd CFF H̃1. This is demonstrated for HERMES
and JLAB kinematics in the panels (a), (b) and (c), (d), re-
spectively, of Fig. 6. Here we set xB = 0.1 and xB = 0.2, re-
spectively, as well as −∆2 = 0.2 GeV2 and Q2 = 2.5 GeV2.
For models A (dash–dotted) and B (solid) with same H̃1,
taking B̃val = B̃sea = 20 GeV−2, we find a small asymme-
try. Within this model parameter the contribution of H̃1
is negligible, since its valence and sea quark contributions
partly cancel each other. Thus, we observe in agreement

with (155) that the asymmetry has the same sign as the
beam spin asymmetry and its absolute value generally in-
creases with growing xB, as it is displayed in panels (b) and
(d). This is mainly caused by the fact that the asymmetry
is proportional to 1/y. Thus, comparing panel (a) and (c),
we realize that for the typical JLAB kinematics (larger
xB) our estimates for |AUL(φ = π/2)| are slightly larger
than for the HERMES one. If the polarized valence quarks
are relatively suppressed with respect to the sea quarks,
displayed by the dashed line, the negative sea quark con-
tribution takes over and induces the sign change in panel
(a). For larger value of xB, see panel (b), the asymmetry
turns out to be positive. For the contrary case that the
valence quark contribution is enhanced (dotted line), the
target spin asymmetry becomes sizably large.
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Fig. 7a–d. Tensor asymmetries
Azz(φ) a and c and ALzz(φ) b
and d for HERMES a and b and
JLAB@12 GeV c and d kinemat-
ics within the same GPD models
as in Fig. 5 and mean values as
in Fig. 6. The thick dotted line
in panels a and c shows only the
BH cross section

The sign of the charge asymmetryAC is not predictable.
For the mean values used above, we find that the model A
gives an asymmetry that is negligibly small, the B models
provide a positive and the C model a large negative con-
tribution, where no D-term has been taken into account.
This observation is in qualitative agreement with our re-
sults for the proton target and affirms once more that an
access to the D-term contribution is intricate.

The tensor asymmetry Azz(φ), cf.(116), of an unpolar-
ized positron and electron beam is displayed in Fig. 7(a)
and (c) for the same HERMES and JLAB@12 GeV kine-
matics as in Fig. 6, respectively. The thick dotted line
shows the pure BH contribution, which is in correspondence
with (130) almost flat for HERMES kinematics (a). In the
case of JLAB kinematics (c) its contribution is smaller
compared to the approximation (130), which is caused by
higher order terms in ξ and τ that have not been taken into
account. Subtraction of the pure BH contribution gives a
dominant cos(φ) contribution that is proportional to the
real part of the linear combination (131). As in the case
of the charge asymmetry the sign depends on the details
of GPDs. In panels (b) and (d) we have plotted the ten-
sor asymmetry ALzz(φ), cf.(133), for a polarized lepton
(positron, electron) beam, which is essentially given by
a sin(φ) harmonic. Its amplitude is proportional to the
imaginary part of CFFs combination that enters (134). If
both CFFs H3 and H5 are small, as it is realized in mod-
els A (dash-dotted) and B (dashed), we find only a small
asymmetry, which has the same sign as the beam spin
asymmetries. This is in line with approximation (156).
This tensor asymmetry is rather sensitive to bound state
effects. For instance, in the case that there is an impor-
tant 
mH3 contribution, model B′ displayed as a dotted
line, the asymmetry becomes sizable. On the other hand, if
we assume a large positive 
mH5 and a negligible 
mH3

contribution, i.e., taking model B̂ (solid), we find a sizable
asymmetry that has a reversed sign.

6 Summary

In this paper we considered the leptoproduction of a pho-
ton on nuclei up to spin-1. For spin-0 and spin-1/2 targets
the theoretical predictions in terms of nuclei GPDs sim-
ply follow from the known results, presented in [6, 7, 53]
at the twist-three level, by appropriate replacements of
form factors, GPDs, and kinematical variables. As a new
result we added to this collection the azimuthal angular
dependence of the leptoproduction cross section of a pho-
ton on a spin-1 target at twist-two level to leading order in
perturbation theory. Since the hard-scattering part is for
all targets unique, the result for the considered harmon-
ics can immediately be extended to NLO. At this order
also a gluon tensor contribution appears, which induces
a cos(3φ) and cos(2φ) harmonic in the interference and
squared DVCS term, respectively. We should add that the
elaboration of the twist-three sector, providing the zero
and second harmonics in the interference term and the
first ones in the DVCS cross section, is straightforward in
our covariant formalism.

For a spin-1 target nine CFFs enter the twist-two sector,
which are given as a convolution with nine GPDs. From the
theoretical point of view, the measurement of the imaginary
and real part of all these CFFs is possible for the case of
a polarized lepton beam and target, with an adjustable
quantization direction, which for both kinds of leptons is
available. Moreover, an appropriate Fourier analysis allows
us to eliminate the twist-three contamination. In this way
one has maximal access to the twist-two deuteron GPDs,
given at the diagonal x = ξ and as convolution.

An important issue is the contamination of the leading
twist-two prediction by power suppressed contributions.
Naively, one would expect that such contributions scale
with ∆2/Q2 and M2

A/Q2. Fortunately, within our model
we showed that the so-called target mass corrections have
the same A scaling as the leading twist-two contributions.
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A more detailed investigation of power suppressed contri-
butions would be very desired.

Certainly, a dedicated experiment is required to mea-
sure all CFFs. Having on hand only an unpolarized target
one can access the beam spin and charge asymmetry via
the Fourier coefficients sI

1,unp and cI1,unp, given as certain
linear combinations of H1, H3, and H5 CFFs. A longitu-
dinally polarized target allows one to measure four further
independent observables. Two of them, e.g., the tensor po-
larization combined with beam spin or charge asymmetry,
are predicted by another linear combination of the afore
mentioned three CFFs, entering the Fourier coefficients
sI
1,LLP and cI1,LLP. Unfortunately, such experiments do not

allow one to access all three GPDs in question. The re-
maining two observables are related to the target spin-flip
odd asymmetries, given by the FCs sI

1,LP and cI1,LP. In a
single target spin-flip experiment one can measure sI

1,LP

and get access to the imaginary part of H̃1. On the other
hand, combining the data for polarized target with charge
asymmetry or the flip of the beam helicity allows us then
to measure cI1, LP and so also the real part of H̃1. In all
these observables we discussed so far, the remaining five
CFFs are kinematically suppressed or do not enter the
theoretical predictions.

To estimate the size of several observables, we proposed
a static model for nuclei GPDs that is based on theA scaling
of the longitudinal degrees of freedom and a ∆2 factorized
ansatz of the nucleon GPDs. Although the underlying fac-
torization of the nucleus wave function should intuitively
contain the bulk of physics, it induces serious theoretical
problems for the GPD model. For instance, it breaks the
polynomiality condition for higher x-moments and also the
symmetry under the replacement η → −η. This breaking
is of order O(ηN ) and might be not crucial for numerical
estimates. For a spin-0 or -1/2 nucleus target, our ansatz
is sufficient to fix all reduced GPDs in terms of the pro-
ton ones (of course, they are also unknown), where spin
effects have been neglected. The remaining degrees of free-
dom concern mainly the form factors, especially, in the sea
quark sector. Of course, binding effects should alter this
oversimplified ansatz, e.g., we expect that t-channel ex-
change forces can induce an important contribution in the
“exclusive” region of GPDs. Such effects might be visible by
a precise measurement of single spin and charge asymme-
tries. For a spin-1 target the large number of GPDs opens
a new window to study nuclear binding effects. Compared
to deep-inelastic scattering or elastic lepton–deuteron scat-
tering, they provide additional information, contained in
the CFFs. Beside the modification of the scaling law for
the CFFs H1 and H̃1, they induce non-vanishing CFFs H3
and H5. We conclude that the nucleus GPDs are challeng-
ing and give a new testing ground for non-perturbative
methods that have been used in nuclear physics for the
calculation of form factors; see reviews [30,31].

Finally, we estimated for the typical kinematics of pres-
ent fixed target experiments several asymmetries and
showed that a qualitative understanding of them is pos-
sible by means of analytical formulae, which are obtained
by a simplification of kinematics and GPD models. For a

deuteron target such an approximation allows one to dis-
cuss the contribution of the CFFs H3 and H5. The LO anal-
yses of the pioneering measurements of DVCS [19, 21, 22]
on the proton suggest for −∆2 ∼ 0.3 GeV2 the dominance
of valence quark GPDs in the valence quark region with
no essential enhancement by the skewness effect. Assuming
the same features also for the nuclei GPDs, our estimates
agree with the φ-integrated beam spin asymmetries mea-
sured on neon and deuteron targets. In the latter case this
asymmetry is already sensitive to the CFFs H3 and H5.
A measurement of the tensor polarization would certainly
provide a new constraint for these CFFs.
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Note added. Recently there appeared a note [63] in which
DVCS on a spin-0 nucleus has been considered in the im-
pulse approximation. This result partly overlaps with our
analysis in Sects. 4 and 5.

A Parameterization of the
electromagneticdeuteron form factors

The set of form factorsG1, G2, andG3 may be expressed by
the charge monopole, magnetic dipole, and charge quadru-
pole form factors:

GC(∆2) =
(

1 − 2τ
3

)
G1(∆2)

+
2τ
3
[
G2(∆2) − (1 − τ)G3(∆2)

]
,

GM (∆2) = G2(∆2), (160)

GQ(∆2) = G1(∆2) −G2(∆2) + (1 − τ)G3(∆2),

with τ = ∆2

4M2
A

. The normalizations of these form fac-
tors read

GC(0) = 1, GM (0) = µd = 1.714,

GQ(0) = Qd = 25.83. (161)

Their parameterization, which is inspired by the counting
rules for large −∆2, was taken from [55]:

GC(∆2) =
G2

D

(
∆2

4

)
1 − 2τ

[(
1 +

2
3
τ

)
g+
00

+
8
3
√

−2τg+
+0 − 2

3
(1 + 2τ)g+

+−

]
, (162)



372 A. Kirchner, D. Müller: Deeply virtual Compton scattering off nuclei

GM (∆2) =
G2

D

(
∆2

4

)
1 − 2τ

[
2g+

00 − 2(1 + 2τ)√
−2τ

g+
+0 − 2g+

+−

]
,

GQ(∆2) =
G2

D

(
∆2

4

)
1 − 2τ

[
−g+

00 +

√
−2
τ
g+
+0 +

1 − τ

τ
g+
+−

]
.

Here we use the standard dipole parameterization for the
nucleon form factor

GD

(
∆2) =

(
1 − ∆2

0.71 GeV2

)−2

and the helicity transition amplitudes in the infinite mo-
mentum frame [64] are given by

g+
00 =

4∑
i=1

ai

α2
i −∆2 , g+

+0 =
√

−∆2
4∑

i=1

bi
β2

i −∆2 ,

g+
+− = −∆2

4∑
i=1

ci
γ2

i −∆2 . (163)

Counting rules predict for large −∆2 the following behav-
ior:

g+
00 ∼ (−∆)−2, g+

+0 ∼ (−∆)−3, g+
+− ∼ (−∆)−4,

(164)

which gives together with the static properties (161) six
constraints for twenty-four fitting parameters:

4∑
i=1

ai

α2
i

= 1,
4∑

i=1

bi
β2

i

=
2 − µd

2
√

2Md

,

4∑
i=1

ci
γ2

i

=
1 − µd −Qd

4M2
d

,

4∑
i=1

bi =
4∑

i=1

ci =
4∑

i=1

ciγ
2
i = 0. (165)

To reduce this set to twelve parameters, one may introduce
for each group αi, βi, and γi the algebraic relations:

α2
i = α2

1 +
(
α2

4 − α2
1
) i− 1

3
for i = 1, . . . , 4. (166)

The fitting parameters are taken from [56] and are given
in Table 3.

Table 3. Fitting parameter sets for the electromagnetic
deuteron form factors

i = 1 2 3 4
ai [fm−2] 1.57057 12.23792 −42.04576 (165)
bi [fm−1] 0.07043 0.14443 (165) (165)
ci −0.16577 (165) (165) (165)
α2

i [fm−2] 1.52501 (166) (166) 23.20415
β2

i [fm−2] 43.67795 (166) (166) 2.80716
γ2

i [fm−2] 1.87055 (166) (166) 41.1294

B Results for the Fourier coefficients

Below the twist-two results for unpolarized and longitu-
dinally polarized target are listed. All results have been
expanded for small τ = ∆2

4M2 , i.e., for ∆2 
 M2. Terms
proportional to H3, G3 are given up to order O(τ), because
G3 is at∆2 = 0 roughly 20 times larger than the other form
factors. The BH amplitude squared has been exactly calcu-
lated. However, the results are very cumbersome and, thus,
they are only presented in leading order of 1/Q2. We note
that the rather lengthy results for MI,DVCS

0,LLP and CBH
0,LLP

can be obtained through the much shorter results for un-
polarized and transverse–transverse coefficients via (44).

B.1 Interference term

Here we give the matrices MI
1,unp, MI

1,LP, and MI
1,TTPΣ ,

which appear in (46).

MI
1,unp =

1
9



9 0 −6 τ
0 0 0

−6 τ 0 12 τ2

−6 ξ 0 12 ξ τ
9 ξ2 −6 ξ2 2

(
ξ2 (3 − 6 τ) + τ

)
0 6 ξ 0
0 0 0
0 0 0
0 0 0



MI
1,LP =

1
6(1 + ξ)

×



0 6 ξ 0
0 3 ξ2 0
0 −6 ξ τ 0
0 −3 ξ2 0
0 −2 ξ 0

6
(
1 + ξ − ξ2) 6 ξ2 −6 ξ2 (1 − 2 τ) − 6 τ

−24 ξ2 0 24 ξ2 τ

0 0 24 ξ2 τ

−6 (1 − ξ) ξ2 −6 ξ3 6 ξ
(
ξ2 (1 − 2 τ) + τ + ξ τ

)




MI
1,TTPΣ =

1
6(1 + ξ)2

×




6 (1 + (2 − ξ) ξ) 6 ξ2 −6 ξ2 (1 − 3 τ) − 6 τ

6 (1 − ξ) ξ2 6 ξ3 6 ξ
(

−
(

ξ2 (1 − 2 τ)
)

− τ − ξ τ
)

−6 ξ2 (1 − 3 τ) − 6 τ −6 ξ (1 + 2 ξ) τ 12 τ
(

ξ2 (1 − 2 τ) + τ
)

−6 (1 − ξ) ξ2 −6 ξ3 6 ξ
(

ξ2 (1 − 2 τ) + τ + ξ τ
)

−2 (1 + (2 − ξ) ξ) −2 ξ2 2
(

ξ2 (1 − 3 τ) + τ
)

0 3 ξ (1 + ξ) (2 + ξ) 0

0 −12 ξ3 0

0 12 ξ3 0

0 −3 ξ2 (1 + ξ)2 0



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ADVCS
0,unp =

1
9


18 0 −12τ −12ξ 18ξ2

0 −12ξ2 0 0 −24ξ2

−12τ 0 24τ2 24ξτ 4
(
ξ2 (3 − 6τ) + τ

)
−12ξ 0 24ξτ 12ξ2 −4ξ

(
2 + 3ξ2

)
18ξ2 −24ξ2 4

(
ξ2 (3 − 6τ) + τ

)
−4ξ

(
2 + 3ξ2

)
4 − 24ξ2 + 6ξ4



BDVCS
0,unp =

1
9


12
(
1 − ξ2

)
−48ξ2 0 −12ξ2

−48ξ2 0 0 0
0 0 0 48ξ3

−12ξ2 0 48ξ3 −12ξ2
(
1 + ξ2

)


CDVCS
0,LP =

1
3(1 + ξ)


6
(
1 + ξ − ξ2

)
−24ξ2 0 −6 (1 − ξ) ξ2

3 (1 − ξ) ξ2 −12ξ3 −12ξ3 3(1 − ξ)2ξ2

−6ξ2 (1 − 2τ) − 6τ 24ξ2τ 24ξ2τ 6ξ (τ + ξ (ξ + τ − 2ξτ))
−3 (1 − ξ) ξ2 12ξ3 12ξ3 −3(1 − ξ)2ξ2

−2 (1 + (1 − ξ) ξ) 8ξ2 0 2 (1 − ξ) ξ2



DDVCS
0,LP =

1
3(1 + ξ)


6
(
1 + ξ − ξ2

)
3 (1 − ξ) ξ2 −6ξ2 (1 − 2τ) − 6τ −3 (1 − ξ) ξ2 −2 (1 + (1 − ξ) ξ)

−24ξ2 −12ξ3 24ξ2τ 12ξ3 8ξ2

0 −12ξ3 24ξ2τ 12ξ3 0
−6 (1 − ξ) ξ2 3(1 − ξ)2ξ2 6ξ (τ + ξ (ξ + τ − 2ξτ)) −3(1 − ξ)2ξ2 2 (1 − ξ) ξ2



ADVCS
0,TTPΣ =

1
9(1 + ξ)2




9 (2 + 2 (2 − ξ) ξ) 18 (1 − ξ) ξ2 18
(

−
(

ξ2 (1 − 3τ)
)

− τ
)

−18 (1 − ξ) ξ2 −6 (1 + (2 − ξ) ξ)

18 (1 − ξ) ξ2 −9(1 − ξ)2ξ2 18ξ
(

−
(

ξ2 (1 − 2τ)
)

− τ − ξτ
)

9(1 − ξ)2ξ2 −6 (1 − ξ) ξ2

18
(

−
(

ξ2 (1 − 3τ)
)

− τ
)

18ξ
(

−
(

ξ2 (1 − 2τ)
)

− τ − ξτ
)

36τ
(

ξ2 (1 − 2τ) + τ
)

18ξ (τ + ξ (ξ + τ − 2ξτ)) 6
(

ξ2 (1 − 3τ) + τ
)

−18 (1 − ξ) ξ2 9(1 − ξ)2ξ2 18ξ (τ + ξ (ξ + τ − 2ξτ)) −9(1 − ξ)2ξ2 6 (1 − ξ) ξ2

−6 (1 + (2 − ξ) ξ) −6 (1 − ξ) ξ2 6
(

ξ2 (1 − 3τ) + τ
)

6 (1 − ξ) ξ2 2 + 2 (2 − ξ) ξ




BDVCS
0,TTPΣ =

1
9(1 + ξ)2


9(1 + ξ)2

(
2 − ξ2

)
−36ξ2 (1 + ξ) (2 + ξ) −36ξ3 (1 + ξ) −9 (1 − ξ) ξ2(1 + ξ)2

−36ξ2 (1 + ξ) (2 + ξ) 144ξ4 −144ξ4 36ξ3(1 + ξ)2

−36ξ3 (1 + ξ) −144ξ4 144ξ4 36ξ3(1 + ξ)2

−9 (1 − ξ) ξ2(1 + ξ)2 36ξ3(1 + ξ)2 36ξ3(1 + ξ)2 −9ξ2
(
1 − ξ2

)2


B.2 DVCS amplitude squared

The matrices MDVCS
0,i , entering (48), for i ∈ {unp,TP−,

LLP,LTP+,TTPΣ,TTP∆} are of the form

MDVCS
0,i =

{
ADVCS

0,i 0
0 BDVCS

0,i

}
,

with ADVCS
0,i being a 5×5 and BDVCS

0,i being a 4×4 matrix.
The matrices MDVCS

0,j for j ∈ {LP,TP+,TTP±} have the
building blocks

MDVCS
0,j =

{
0 CDVCS

0,j

DDVCS
0,j 0

}
,

where CDVCS
0,j is a 5 × 4 and DDVCS

0,j is a 4 × 5 matrix.
We list only the submatrices ADVCS

0,i , BDVCS
0,i , CDVCS

0,j ,

DDVCS
0,j that are needed for an unpolarized and longitudi-

nally polarized target, see top of this page.

B.3 BH amplitude squared

CBH
0,unp =

8
(
2 − 2y + y2

)
3(1 + ξ)2

×
(

2ξ2G2
2 +
(

1 − ∆2
min

∆2

)(
1 − ξ2

)
×
(
3G2

1 − 4τG1G3 + 4τ2G2
3
))

CBH
0,LP =

−8 (2 − y) yλξ
(1 + ξ)3

G2

×
(
ξ (1 + 2ξ)G2 + 2

(
1 − ∆2

min

∆2

)(
1 − ξ2

)
× (G1 − τG3)

)
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CBH
0,TTPΣ =

8
(
2 − 2y + y2

)
(1 − ξ)

(1 + ξ)3

(
1 − ∆2

min

∆2

)

×
(

(1 + ξ)2G1
2 − 2ξ (1 + 2ξ) τG2G3

−2
(

1 − ∆2
min

∆2

)(
1 − ξ2

)
τG3 (G1 − τG3)

)
.

C Estimate of target mass corrections

Target mass corrections for a scalar and spin-1/2 target
have been evaluated in [37], where∆2/Q2 corrections have
been neglected. This result will serve us to derive the scal-
ing law of the target mass corrections with respect to the
atomic mass number A for a general Compton process in
the light-cone dominated region. It is sufficient to consider
the simplest case of a scalar target. Then the target mass
corrections in the parity even sector read for the Comp-
ton amplitude

F1(ξ, η) =
∫

Ω

dy dz h(y, z)

×
[
C

(0)
1

(
y + η z

ξ
− i0

)
+

ξ2M2y2

Q2(y + ηz)2
C

(1)
1

(
y + η z

ξ
− i0

)
+ O

(
ξ4M4

Q4

)
+
{
y → −y
z → −z

}]
. (167)

An analogous formula for the other leading twist amplitude
F2 holds true. Here h(y, z) denotes the DD and the coef-
ficients

C
(0)
1 (Ξ−) = − 1

1 +Ξ
,

and

C
(1)
1 (Ξ−) =

1
(1 +Ξ)2

+ 2 ln
(

Ξ

1 +Ξ

)
, (168)

depend on the variable Ξ = ξ/(y+ηz). Let us set the mass
M and the scaling variables in (167) equal to the nucleon
ones: MN , ξN , ηN . The Compton amplitude for a nucleus
A at smaller values of the Bjorken variable15 follows from
the replacements:

MN → M = AMN , ξN → ξ ∼ ξN/A , ηN → η ∼ ηN/A ,

and

h → hA . (169)

15 We only use this condition to simplify the discussion. For
larger values of xB one should take the relation ξ = (1 +
ξ)ξN/(1 + ξN )A.

Corresponding to our nuclei GPD model (70) and the GPD
definition (50) in terms of a DD, we read off the scaling
law for the nucleus DD:

hA(y, z) ∝ θ(|Ay ± z| ≤ 1)h(Ay, z) . (170)

Changing the integration variable y = y′/A and renaming
y′ → y, we find that the Compton amplitude for a nucleus
target reads

FA
1 (ξ, η) ∝

∫
Ω

dy dz h(y, z)

×
[
C

(0)
1

(
y + ηN z

ξN
− i0

)
+

ξ2NM
2
Ny

2

Q2(y + ηNz)2
C

(1)
1

(
y + ηN z

ξN
− i0

)
+ O

(
ξ4NM

4
N

Q4

)
+
{
y → −y
z → −z

}]
. (171)

As we realize by comparison with (167), setting M = MN ,
ξ = ξN , and η = ηN , the target mass corrections do not
scale with A with respect to the leading twist-two term. It
can be shown in the same way from (30) and (31) in [37]
that also the resummed target mass corrections possess
this property. From the same representation it also follows
that this statement is true for a target with non-zero spin
content, including the parity odd sector.

Beside this kind of corrections also dynamical ones,
which are expressed in terms of multi-parton correlation
functions, appear in the CFFs. Unfortunately, only little is
known about them, and it remains an open task to consider
the full twist-four sector.
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